吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (2): 533-540.doi: 10.13278/j.cnki.jjuese.201502201

• 地质工程与环境工程 • 上一篇    下一篇

基于点稳定系数法的斜坡稳定性分析

马建全1, 王念秦1, 张新社2   

  1. 1. 西安科技大学地质与环境学院, 西安 710054;
    2. 中国地质调查局西安地质调查中心, 西安 710054
  • 收稿日期:2014-07-02 发布日期:2015-03-26
  • 作者简介:马建全(1983-),男,在站博士后,主要从事岩土体稳定方面的科研工作,E-mail:majianquan@xust.edu.cn
  • 基金资助:

    国家自然科学基金重点项目(41130753);国家自然科学基金青年科学基金项目(41302276)

Analysis on Slope Stability Based on Local Factor of Safety

Ma Jianquan1, Wang Nianqin1, Zhang Xinshe2   

  1. 1. College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China;
    2. Xi'an Center of Geological Survey, CGS, Xi'an 710054, China
  • Received:2014-07-02 Published:2015-03-26

摘要:

基于莫尔-库伦强度理论构架,界定了点稳定系数的概念,并推导其计算公式。利用Geostudio软件建立了均质斜坡模型及计算其应力分布,并在此基础上结合MATLAB软件计算斜坡模型中各点的点稳定系数,勾绘出斜坡体内不同稳定度区域,探析了斜坡稳定性,并与传统极限平衡法进行了对比。对比结果表明:对直立斜坡,两种方法的计算结果均为不稳定,但点稳定性系数法勾绘出坡脚及坡脚底部存在两处不稳定区域;对60°斜坡,点稳定系数法的计算结果表明坡脚处存在潜在不稳定区域,而极限平衡法的计算结果表明坡体处于稳定状态;对45°斜坡,两种方法的计算结果均为稳定,计算结果一致。进一步分析得到结论:点稳定系数法不需要假设或指定某一形状滑面进行斜坡稳定性评价,且可考虑应力集中对坡体稳定性的影响;极限平衡法以稳定系数表达计算结果,而点稳定系数法以不稳定区域表达计算结果。在分析了应力和岩土体力学参数因素对点稳定系数法计算结果的敏感性后发现:相对于极限平衡法,岩土体力学参数对点稳定系数法影响更为敏感,存在黏聚力界限点和内摩擦角界限点,且对均质斜坡破坏形式(局部滑动变形破坏或整体压缩变形破坏)起着非常重要的作用。

关键词: 点稳定系数, 极限平衡法, 斜坡稳定性

Abstract:

The local factor of safety (LFS) formula was derived based on the Mohr-Coulomb strength theory and the concept of LFS was redefined. The stress distribution of the slope was calculated by using Geostudio software, combined with MATLAB for the calculation of LFS for each point in the slope model to outline the stable and unstable regions for analysis of the slope stability. Comparison of the results by the local factor of safety method(LFSM) and the limit equilibrium method (LEM) shows that for a vertical slope, both LFSM and LEM predict that it is unstable, whereas the LFS delineated a zone of potential failure behind the vertical face and near the toe. For a 60° slope, the LEM predicts that the factor of safety is greater than 1.00, whereas the LFSM delineates a zone of potential failure near the toe. For a 45° slope, both LFSM and LEM predict its stability. Further analysis shows that LFSM can analyze the slope stability without needing to identify or assume any potential failure surfaces, the stress concentration problem can be taken into consideration for slope stability analysis. The LFSM displays the results by unstable regions, while LEM shows the factor of safety. Sensitivity analysis of stress and geotechnical parameters in LFSM and LEM were conducted and the results revealed that in comparison to LEM, LFSM is more sensitive to the variation of geotechnical parameters. There exist boundary points of cohesion and internal friction angle that play important roles in determining the failure shape (partial deformation or damage, whole compression deformation or damage) of slope.

Key words: local factor of safety, limit equilibrium method, slope stability

中图分类号: 

  • P642

[1] Fredlund D G, Rahardjo H. Soil Mechanics for Un-saturated Soils[M]. New Jersey: John Wiley & Sons Press, 1993.

[2] 年廷凯, 张克利, 刘红帅, 等.基于强度折减法的三维边坡稳定性与破坏机制[J].吉林大学学报:地球科学版, 2013, 43(1): 178-185. Nian Tingkai, Zhang Keli, Liu Hongshuai, et al. Stability and Failure Mechanism of Three-Dimensional Slope Using Strength Reduction Method[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(1): 178-185.

[3] 徐寅, 陈胜宏. 基于离散单元法的滑坡堆积及其涌浪计算[J]. 岩土力学, 2012, 33(9): 2850-2856. Xu Yin, Chen Shenghong. Calculation of Heap Shape of Landslide and Its Surge Based on Discrete Element Method[J]. Rock and Soil Mechanics, 2012, 33(9): 2850-2856.

[4] 张国新, 赵妍, 石根华, 等. 模拟岩石边坡倾倒破坏的数值流形法[J]. 岩土工程学报, 2007, 29(6):800-805. Zhang Guoxin, Zhao Yan, Shi Genhua, et al. Toppling Failure Simulation of Rock Slopes by Numerical Manifold Method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 800-805.

[5] 马建全, 李广杰, 张文, 等.基于可靠度的边坡稳定性影响因素[J]. 吉林大学学报:地球科学版, 2011, 41(增刊1): 187-194. Ma Jianquan, Li Guangjie, Zhang Wen, et al. Factors of Slope Stability Based on the Reliability Analysis[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(Sup.1): 187-194.

[6] 张晨, 陈剑平, 肖云华.基于神经网络对有限元强度折减法分析[J].吉林大学学报:地球科学版, 2009, 39(1): 114-118. Zhang Chen, Chen Jianping, Xiao Yunhua. Analysis on Theory of Strength Reduction FEM Based on Artificial Neural Networks[J]. Journal of Jilin University: Earth Science Edition, 2009, 39(1): 114-118.

[7] Huang S, Yamasaki K. Slope Failure Analysis Using Local Minimum Factor-of-Safety Approach[J]. Journal of Geotechnical Engineering, 1993, 119(12), 1974-1989.

[8] 蒋青青. 基于Hoek-Brown准则点安全系数的边坡稳定性分析[J]. 中南大学学报:自然科学版, 2009, 40(3): 786-790. Jiang Qingqing. Stability of Point Safety Factor of Slope Based on Hoek-Brown Criterion[J]. Journal of Central South University: Science and Technology, 2009, 40(3): 786-790.

[9] 樊赟赟, 王思敬, 王恩志, 等. 岩土材料剪切破坏点安全系数的研究[J]. 岩土力学, 2009, 30(增刊2): 200-203. Fan Yunyun, Wang Sijing, Wang Enzhi, et al. Research on Point Safety Factor of Shear Failure Geomaterials[J]. Rock and Soil Mechanics, 2009, 30(Sup.2):200-203.

[10] 杨涛, 周德培, 马惠民, 等. 滑坡稳定性分析的点安全系数法[J]. 岩土力学, 2010, 31(3): 971-975. Yang Tao, Zhou Depei, Ma Huimin, et al. Point Safety Factor Method for Stability Analysis of Landslide[J]. Rock and Soil Mechanics, 2010, 31(3):971-975.

[11] 郑文棠. 基于FLAC3D的强度折减法和点安全系数法对比[J].水利与建筑工程学报, 2010, 8(4):54-57. Zheng Wentang. Contrast on Strength Reduction Method and Point Safety Factor Method with FLAC3D[J]. Journal of Water Resources and Architectural Engineering, 2010, 8(4): 54-57.

[12] Lu Ning, ?ener-Kaya B, Wayllace A, et al. Analysis of Rainfall-Induced Slope Instability Using a Field of Local Factor of Safety[J]. Water Resource Research, 2012, 48: W09524.

[1] 王吉亮,杨静,李会中,黄孝泉,刘冲平,白伟,郝文忠,朱永生. 乌东德水电站左岸拱肩槽边坡稳定性[J]. 吉林大学学报(地球科学版), 2013, 43(2): 528-536.
[2] 徐佩华,陈剑平,石丙飞,仲志成. 人工边坡潜在滑动面研究--以广州科学城某人工高边坡为例[J]. J4, 2008, 38(5): 825-0830.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!