吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (2): 630-638.doi: 10.13278/j.cnki.jjuese.201502304

• 地球探测与信息技术 • 上一篇    下一篇

基于岩石物理模版的碳酸盐岩含气储层定量解释

张广智1, 陈娇娇1, 陈怀震1, 张金强2, 印兴耀1   

  1. 1. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580;
    2. 中国石化石油勘探开发研究院, 北京 100083
  • 收稿日期:2014-06-19 发布日期:2015-03-26
  • 作者简介:张广智(1971-),男,教授,博士,主要从事地震属性、储层预测和流体识别方面的研究,E-mail:zhanggz@upc.edu.cn
  • 基金资助:

    国家"973"计划项目(2013CB228604,2014CB239201);国家油气重大专项项目(2011ZX05014-001-010HZ)

Quantitative Interpretation of Carbonate Gas Reservoir Based on Rock Physics Template

Zhang Guangzhi1, Chen Jiaojiao1, Chen Huaizhen1, Zhang Jinqiang2, Yin Xingyao1   

  1. 1. School of Geosciences and Technology, China University of Petroleum (Huadong), Qingdao 266580, Shandong, China;
    2. Research Institute of Petroleum Exploration and Production, Sinopec, Beijing 100083, China
  • Received:2014-06-19 Published:2015-03-26

摘要:

笔者针对碳酸盐岩储层勘探开发面临的储层预测与流体识别难度大的问题,基于岩石物理理论,提出了一种对碳酸盐岩含气储层进行定量解释的方法:首先,综合碳酸盐岩地质和测井信息,以岩石物理理论为依据,实现了适用的碳酸盐岩岩石物理模型的构建;然后基于岩石物理模型优选出对孔隙度、含气饱和度较为敏感的参数λρμρ,构建能够反映储层孔隙度与含气饱和度的碳酸盐岩岩石物理模版;最后,将岩石物理模版与工区反演提取的参数相结合,确定储层分布范围,并对储层范围内孔隙度和含气饱和度数值进行了定量解释。实例分析表明,基于该模版定量解释得到的孔隙度和含气饱和度与实际地层孔隙度及产气结果基本一致,经验证碳酸盐岩岩石物理模版的可靠性和适用性较好。

关键词: 碳酸盐岩, 岩石物理模版, 储层参数, 定量解释

Abstract:

In the process of carbonate reservoir exploration and development, it is difficult for reservoir prediction and fluid identification. Aiming at this problem, we put forward a quantitative prediction method through making carbonate gas reservoir parameters based on the rock physics theories. First of all, considering the geological and well logging information of carbonate rock and according to the rock physics theories, we establish the carbonate rock physics model; and further we optimize the sensitive parameters (λρ and μρ) with the change of porosity, gas saturation, and establish the rock physics template for quantitative interpretation. Finally, the template and extracted parameters from seismic inversion were combined to decide the reservoir distribution and quantitatively interpret the porosity and gas saturation within the range of reservoir. The example analyses show that the porosity and gas saturation getting by our carbonate rock physics template are basically identical with the actual gas production and porosity. The reliability and applicability of carbonate rock physics template are thereby verified.

Key words: carbonate rocks, rock physics template, reservoir parameters, quantitative interpretation

中图分类号: 

  • P631.4

[1] 蒋涔, 余瀚熠. 岩石物理分析技术的应用[J]. 内蒙古石油化工, 2010 (5):97-99. Jiang Cen, Yu Hanyi. Petrophysical Analysis of the Application Areas[J]. Inner Mongulia Petrochemical Industry, 2010(5): 97-99.

[2] 马淑芳, 韩大匡, 甘利灯, 等. 地震岩石物理模型综述[J]. 地球物理学进展, 2010, 25(2):460-471. Ma Shufang, Han Dakuang, Gan Lideng, et al. A Review of Seismic Rock Physics Models[J]. Progress in Geophysics, 2010, 25(2): 460-471.

[3] 徐胜峰, 李勇根, 曹宏. 地震岩石物理研究概述[J]. 地球物理学进展, 2009, 24(2):680-691. Xu Shengfeng, Li Yonggen, Cao Hong. A Review of Seismic Rock Physics[J]. Progress in Geophysics, 2009, 24(2): 680-691.

[4] 赵迎月, 顾汉明, 李宗杰, 等. 塔中地区奥陶系典型地质体地震识别模式[J]. 吉林大学学报:地球科学版, 2010, 40(6):1262-1270. Zhao Yingyue, Gu Hanming, Li Zongjie, et al. The Seismic Wave Field Recognition Mode of Typical Geological Bodies in the Ordovician in Tazhong Area[J]. Journal of Jilin University: Earth Science Edition, 2010, 40(6): 1262-1270.

[5] 郄莹, 付晓飞, 孟令东, 等. 碳酸盐岩内断裂带结构及其与油气成藏[J]. 吉林大学学报:地球科学版, 2014, 44(3):749-761. Qie Ying, Fu Xiaofei, Meng Lingdong, et al. Fault Zone Structure and Hydrocarbon Accumulation in Carbonates[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(3): 749-761.

[6] 刘春园, 魏修成, 徐胜峰, 等. 地球物理方法在碳酸盐岩储层预测中的应用综述[J]. 地球物理学进展, 2007, 22(6):1815-1822. Liu Chunyuan, Wei Xiucheng, Xu Shengfeng, et al. The Overview of Geophysical Techniques in Prediction of Carbonate Rock Reservoir[J]. Progress in Geophysics, 2007, 22(6): 1815-1822.

[7] 吕其彪, 孙作兴. 岩石物理模版在储层定量解释中的应用[J]. 地球物理学进展, 2012, 27(2):610-618. Lü Qibiao, Sun Zuoxing. Application of Rock Physics Chart to Quantitative Reservoir Interpretation[J]. Progress in Geophysics, 2012, 27(2): 610-618.

[8] Ødegaard E, Avseth P. Interpretation of Elastic Inversion Results Using Rock Physics Templates[C]//Presented at the 65th EAGE Mtg. Stavanger: EAGE, 2003:E-17.

[9] Ødegaard E, Avseth P. Well Log and Seismic Data Analysis Using Rock Physics Templates[J]. First Break, 2004, 22: 37-43.

[10] Avseth P, Mukerji T, Mavko G. Quantitative Seismic Interpretation: Applying Rock Physics to Reduce Interpretation Risk[M]. Cambridge: Cambridge University Press, 2005.

[11] Xin G, Han D. Lithology and Fluid Differentiation Using Rock Physics Templates[J]. The Leading Edge, 2009, 28: 60-65.

[12] Boruah N. Rock Physics Template (RPT) Analysis of Well Logs for Lithology and Fluid Classification[C]//Presented at the 8th International Conference & Exposition on Petroleum Geophysics. Hyderabad: SPG, 2010:1-8.

[13] Andersen C F, Grosfeld V, Wijngaarden A V, et al. Interactive Interpretation of 4D Prestack Inversion Data Using Rock Physics Templates, Dual Classification, and Real-Time Visualization[J]. The Leading Edge, 2009, 28(8): 898-906.

[14] Gupta S D, Chatterjee R, Farooqui M Y.Rock Physics Template (RPT) Analysis of Well Logs and Seismic Data for Lithology and Fluid Classification in Cambay Basin[J]. International Journal of Earth Sciences, 2012, 101: 1407-1426.

[15] Mavko G, Mukerji T, Dvorkin J. The Rock Physics Handbook Tools for Seismic Analysis of Porous Media[M]. 2nd ed. Cambridge: Cambridge University Press, 2009.

[16] Keys R G, Xu S Y. An Approximation for the Xu-White Velocity Model[J]. Geophysics, 2002, 67: 1406-1414.

[17] Xu S Y, Payne M A. Modeling Elastic Properties in Carbonate Rocks[J]. The Leading Edge, 2009, 28(1): 66-74.

[18] Baechle G T, Colpaert A, Eberli G P, et al.Modeling Velocity in Carbonates Using a Dual Porosity DEM Model[C]//Presented at the 77th SEG Mtg. San Antonio: SEG, 2007: 1589-1593.

[19] Kumar M, Han D H. Pore Shape Effect on Elastic Properties of Carbonate Rocks[C]//Presented at the 75th SEG Mtg. Houston: SEG, 2005, 24: 1477-1480.

[20] Gassmann F. Über Die Elastizitat Poröser Medien[J]. Vie der Natu Geselschaft in Zürich, 1951, 96: 1-23.

[21] White J E. Computed Seismic Speeds and Attenuation in Rocks with Partial Gas Saturation[J]. Geophysics, 2002, 67: 1406-1414.

[22] 周水生, 张波, 伍向阳. 流体替换方法研究及应用分析[J]. 地球物理学进展, 2009, 24(5):1660-1664. Zhou Shuisheng, Zhang Bo, Wu Xiangyang.Reseanch on Fluid Substitution Method and Its Application[J]. Progress in Geophysics, 2009, 24(5): 1660-1664.

[23] 巴晶, 晏信飞, 陈志勇, 等. 非均质天然气藏的岩石物理模型及含气饱和度反演[J]. 地球物理学报, 2013, 56(5):1696-1706. Ba Jing, Yan Xinfei, Chen Zhiyong, et al. Rock Physics Model and Gas Saturation Inversion for Heterogeneous Gas Reservoirs[J]. Chinese Journal of Geophysics, 2013, 56(5): 1696-1706.

[1] 范卓颖, 林承焰, 鞠传学, 韩长城, 熊陈微. 塔河油田二区奥陶系优势储集体特征及控制因素[J]. 吉林大学学报(地球科学版), 2017, 47(1): 34-47.
[2] 牛君, 黄文辉, 丁文龙, 蒋文龙, 张亚美, 漆立新, 云露, 吕海涛. 麦盖提斜坡奥陶系碳酸盐岩碳氧同位素特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 61-73.
[3] 韦丹宁, 付广. 反向断裂下盘较顺向断裂上盘更易富集油气机理的定量解释[J]. 吉林大学学报(地球科学版), 2016, 46(3): 702-710.
[4] 徐波, 唐铁柱, 李辰. 鄂尔多斯盆地中东部马五段碳酸盐岩气藏富气主控因素—以陕200井区为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1299-1309.
[5] 马伯永, 王根厚, 李尚林, 徐红燕. 羌塘盆地东部中侏罗统陆源碎屑与碳酸盐混合沉积成岩特征[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1310-1321.
[6] 王加昇, 温汉捷. 贵州交犁—拉峨汞矿床方解石Sm-Nd同位素年代学[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1384-1393.
[7] 谭思哲, 高顺莉, 葛和平, 付焱鑫. 南黄海盆地二叠系烃源岩孢粉相特征及其形成环境[J]. 吉林大学学报(地球科学版), 2015, 45(3): 691-700.
[8] 金博, 黄先雄, 常广发,张胜斌,付海波,李铁柱. 滨里海盆地Д南石炭系碳酸盐岩储层类型及分布特征[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2042-2050.
[9] 赵 中 平. 井斜角对裂缝特征参数统计的影响及其意义[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1798-1804.
[10] 李振宏,董树文,渠洪杰. 华北克拉通北缘侏罗纪造山过程及关键时限的沉积证据[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1553-1574.
[11] 郄莹,付晓飞,孟令东,许鹏. 碳酸盐岩内断裂带结构及其与油气成藏[J]. 吉林大学学报(地球科学版), 2014, 44(3): 749-761.
[12] 鲁功达,晏鄂川,王环玲,王雪明,谢良甫. 基于岩石地质本质性的碳酸盐岩单轴抗压强度预测[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1915-1921.
[13] 杨有星,金振奎,白武厚,乔东生,刁丽颖,孟凡洋,袁明会,张春. 黄骅坳陷歧北斜坡区薄层湖相碳酸盐岩沉积相模式及演化特征[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1330-1340.
[14] 周波,邱海峻, 段书府,李启明,邬光辉. 塔中Ⅰ号断裂坡折带上奥陶统碳酸盐岩储层微观孔隙成因[J]. 吉林大学学报(地球科学版), 2013, 43(2): 351-359.
[15] 王小敏,陈昭年,樊太亮,余腾孝,曹自成,何海. 巴麦地区晚石炭世碳酸盐岩台内滩储层综合评价[J]. 吉林大学学报(地球科学版), 2013, 43(2): 371-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!