吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (4): 1217-1226.doi: 10.13278/j.cnki.jjuese.201504301

• 地球探测与信息技术 • 上一篇    下一篇

三度体重力矢量的有限单元法正演计算

蒋甫玉1, 谢磊磊1, 常文凯1, 黄岩2, 张作宏2   

  1. 1. 河海大学地球科学与工程学院, 南京 210098;
    2. 江苏省地质勘查技术院, 南京 210048
  • 收稿日期:2014-10-30 发布日期:2015-07-26
  • 作者简介:蒋甫玉(1981),男,讲师,博士,主要从事固体地球物理学研究,E-mail:jiangfy@hhu.edu.cn.
  • 基金资助:

    江苏省自然科学基金项目 (BK20140844);江苏省地质矿产勘查局科研技改项目(2014-KY-15)

Forward Calculation of Three Dimensional Gravity Vector Using Finite Element Method

Jiang Fuyu1, Xie Leilei1, Chang Wenkai1, Huang Yan2, Zhang Zuohong2   

  1. 1. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China;
    2. Geology Exploration Technology Institute of Jiangsu Province, Nanjing 210048, China
  • Received:2014-10-30 Published:2015-07-26

摘要:

以重力位在场源内部满足泊松方程为依据,以重力矢量满足第三类边界条件为切入点,推导了与三度体重力矢量满足的边值问题相对应的变分问题,进而利用有限单元法实现了对变分问题的求解.立方体模型试验结果表明:文中提出的新的系数矩阵存储方式较之传统方式能够更有效地节约存储空间,且为利用预条件共轭梯度技术更加快速地求解线性方程组提供了保障;重力矢量的计算精度与边界长度及单元网格的边长息息相关,其计算效率则主要取决于所要计算的节点总数和大型稀疏线性方程组求解算法的优劣;一般情况下,当单元的边长小于场源体边长的1/10、边界长度大于场源体长度的7.5倍时,能够获得理想的结果.

关键词: 变分问题, 重力矢量, 有限单元法, 数据存储, 计算精度, 三度体

Abstract:

Variational problem of three dimensional gravity vector was deduced to meet the boundary value based on Poisson equation and the third boundary condition, and the solution of variational problem is further implemented by using the finite element method. The results of the cubic model test show that the proposed new coefficient matrix storage strategy is more effective to save storage space than a traditional approach; this, in turn, makes it possible to quickly solve liner equations by using the preconditioned conjugate gradient technology. The calculation precision of the gravity vector is closely related to the boundary length and unit grid; while the computational efficiency mainly depends on the total number of nodes and the algorithm used in solving a large sparse system of linear equation. In general, when the length of unit grid is less than 1/10 of the body length, and the boundary length is greater than 7.5 times of the length of the source, a desired result can be achieved.

Key words: variational problem, gravity vector, finite element method, data storage, calculation precision, three dimensional body

中图分类号: 

  • P631.1

[1] 曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005. Zeng Hualin. Gravity Field and Gravity Exploration[M]. Beijing: Geological Publishing House, 2005.

[2] 李姗姗, 吴晓平, 吴星. 重力矢量及张量信息在地球重力场中的应用[J]. 测绘学院学报, 2005, 22(2): 94-96. Li Shanshan, Wu Xiaoping, Wu Xing. Applications of Gravity Vector and Tensor in the Gravity Field[J]. Journal of Institute of Surveying and Mapping, 2005, 22(2): 94-96.

[3] Nagy D. The Gravitational Attraction of a Right Rectangular Prism[J]. Geophysics, 1966, 31(2): 362-371.

[4] Talwani M. Computer Usage in the Computation of Gravity Anomalies[J]. Methods in Computational Physics, 1973, 13(1): 343-389.

[5] Kwok Y K. Singularities in Gravity Computation for Vertical Cylinders and Prisms[J]. Geophysical Journal International, 1991, 104(1): 1-10.

[6] Kwok Y K. Gravity Gradient Tensors Due to a Polyhedron with Polygonal Facets[J]. Geophysical Prospecting, 1991, 39(3): 435-443.

[7] Okabe M. Analytical Expressions for Gravity Anomalies Due to Homogeneous Polyhedral Bodies and Translations into Magnetic Anomalies[J].Geophysics, 1979, 44(4): 730-741.

[8] Holstein H, Ketteridge B. Gravimetric Analysis of Uniform Polyhedral[J]. Geophysics, 1996, 61(2): 357-364.

[9] Commer M. Three-Dimensional Gravity Modelling and Focusing Inversion Using Rectangular Meshes[J]. Geophysical Prospecting, 2011, 59(5): 966-979.

[10] Li X, Chouteau M. Three-Dimensional Gravity Mo-deling in All Space[J]. Surveys in Geophysics, 1998, 19(4): 339-368.

[11] 蒋甫玉, 高丽坤, 黄麟云. 油气模型的重力梯度张量研究[J]. 吉林大学学报: 地球科学版, 2011, 41(2): 545-551. Jiang Fuyu, Gao Likun, Huang Linyun. Study on Gravity Gradient Tensor of the Oil-Gas Model[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(2): 545-551.

[12] 骆遥, 姚长利. 复杂形体重力场、梯度及磁场计算方法[J]. 地球科学: 中国地质大学学报, 2007, 32(4): 517-522. Luo Yao, Yao Changli. Forward Method for Gravity, Gravity Gradient and Magnetic Anomalies of Complex Body[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(4): 517-522.

[13] 陈召曦, 孟小红, 郭良辉, 等. 基于GPU并行的重力、重力梯度三维正演快速计算及反演策略[J]. 地球物理学报, 2012, 55(12): 4069-4077. Chen Zhaoxi, Meng Xiaohong, Guo Lianghui, et al. Three Dimensional Fast Forward Modeling and the Inversion Strategy for Large Scale Gravity and Gravimetry Data Based on GPU[J]. Chinese Journal of Geophysics, 2012, 55(12): 4069-4077.

[14] Dave A M, Matthew G K. Optimal, Scalable Forward Models for Computing Gravity Anomalies[J]. Geophysical Journal International, 2011, 187(1): 161-177.

[15] Cai Yongen, Wang Chiyun. Fast Finite-Element Cal-culation of Gravity Anomaly in Complex Geolo-gical Regions[J]. Geophysical Journal International, 2005, 162(3): 696-708.

[16] Cruz F A, Knepley M G, Barba L A. PetFMM: A Dynamically Load-Balancing Parallel Fast Multipole Library[J]. International Journal for Numerical Methods in Engineering, 2010, 85(4): 403-428.

[17] Farquharson C G,Mosher C R W.Three-Dimensional Modelling of Gravity Data Using Finite Differences[J]. Journal of Applied Geophysics, 2009, 68(3): 417-422.

[18] 朱自强, 曾思红, 鲁光银, 等. 二度体的重力张量有限元正演模拟[J]. 物探与化探, 2010, 34(5): 668-672. Zhu Ziqiang, Zeng Sihong, Lu Guangyin, et al. Finite Element Forward and Simulation of the Two Dimensional Gravity Gradient Tensor[J]. Geophysical and Geochemical Exploration, 2010, 34(5): 668-672.

[19] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994. Xu Shizhe. Finite Element Method in Geophysics[M]. Beijing: Science Press, 1994.

[20] 张力. 坑道直流聚焦超前探测有限元数值模拟研究[D]. 长沙:中南大学, 2011. Zhang Li. Research on Numerical Simulation for DC Focusing Advanced Detection in Tunnel with Finite Element Method[D]. Changsha: Central South University, 2011.

[21] 吴小平, 徐果明. 不完全Cholesky共轭梯度法及其在地电场计算中的应用[J]. 石油地球物理勘探, 1998, 33(1): 89-94. Wu Xiaoping, Xu Guoming. Incomplete Cholesky Conjugate Gradient Method and Its Application in Geoelectric Field Computation[J]. OGP, 1998, 33(1): 89-94.

[22] 吴小平, 徐果明, 李时灿. 利用不完全Cholesky共轭梯度法求解点源三维地电场[J]. 地球物理学报, 1998, 41(6): 848-855. Wu Xiaoping, Xu Guoming, Li Shican. The Calculation of Three-Dimensional Geoelectric Field of Point Source by Incomplete Cholesky Conjugate Gradient Method[J]. Chinese Joural of Geophysics, 1998, 41(6): 848-855.

[23] Nagy D, Papp G, Beneded J. The Gravitational Potential and Its Derivatives for the Prism[J]. Journal of Geodesy, 2000, 74: 552-560.

[1] 罗天涯, 熊彬, 蔡红柱, 陈欣, 刘云龙, 兰怀慷, 李祖强, 梁卓. 复杂电性结构大地电磁二维响应特征[J]. 吉林大学学报(地球科学版), 2017, 47(1): 215-223.
[2] 刘海飞, 柳杰, 高寒, 郭荣文, 童孝忠, 麻昌英. 五极纵轴激电测深三维有限元正演模拟[J]. 吉林大学学报(地球科学版), 2016, 46(3): 884-892.
[3] 汤井田,薛帅. MT有限元模拟中截断边界的影响[J]. 吉林大学学报(地球科学版), 2013, 43(1): 267-274.
[4] 李勇| 林品荣, 李桐林, 王有学, 尚晓. 基于异常复电位2.5维CR有限元数值模拟[J]. J4, 2011, 41(5): 1596-1604.
[5] 蒋甫玉, 高丽坤, 黄麟云. 油气模型的重力梯度张量研究[J]. J4, 2011, 41(2): 545-551.
[6] 杨晓弘,何继善. 频率域激发极化法有限元数值模拟[J]. J4, 2008, 38(4): 681-0684.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!