吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (5): 1502-1514.doi: 10.13278/j.cnki.jjuese.201505205

• 地质工程与环境工程 • 上一篇    下一篇

淮南采煤沉陷区积水来源的氢氧稳定同位素证据

张磊1,2, 秦小光1, 刘嘉麒1, 穆燕1, 安士凯3, 陆春辉3, 陈永春3   

  1. 1. 中国科学院地质与地球物理研究所新生代地质与环境重点实验室, 北京 100029;
    2. 中国科学院大学地球科学学院, 北京 100049;
    3. 煤炭开采国家工程技术研究院煤矿生态环境保护国家工程实验室, 安徽 淮南 232001
  • 收稿日期:2014-12-07 发布日期:2015-09-26
  • 作者简介:张磊(1986),男,博士研究生,主要从事第四纪地质与环境研究,E-mail:zhanglei1921@163.com。
  • 基金资助:

    中国工程院重大咨询项目(2012-ZD-11-1-1);国家自然科学基金项目(41172158,40472094,40024202);国家"973"计划项目(2010CB950200);中国科学院知识创新项目(KZCX2-YW-Q1-03);中国科学院重点战略研究项目(XDA05120502)

Characters of Hydrogen and Oxygen Stable Isotope of Different Water Bodies in Huainan Coal Mining Area

Zhang Lei1,2, Qin Xiaoguang1, Liu Jiaqi1, Mu Yan1, An Shikai3, Lu Chunhui3, Chen Yongchun3   

  1. 1. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    2. College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. National Engineering Laboratory for Protection of Coal Mine Eco-Environment, Coal Mining National Engineering Technology Research Institute, Huainan 232001, Anhui, China
  • Received:2014-12-07 Published:2015-09-26

摘要:

淮南是我国东部重要的能源基地,由于长期地下采煤,地表形成大面积的采煤沉陷区并积水,造成严重地质灾害。针对于此,部分学者提出利用采煤沉陷区建立"平原水库"解决周边地区干旱年份农田缺水问题的设想。然而,一方面,由于煤层上覆几百米厚的新生代沉积,采煤塌陷形成的沉陷裂隙是否沟通了不同含水层之间的水力联系,并因此改变了这个地区的地下水系统,成为区域水资源评价需要了解的一个重要科学问题;另一方面,建立"平原水库"需要有稳定的补给水源,采煤形成的沉陷裂隙如果沟通了地下不同深度含水层的水力联系,是否使地下水成为塌陷区除降雨外的重要补给来源,这就成为评价"平原水库"水资源潜力的重要参考依据。氢氧稳定同位素是示踪天然水体水来源的重要手段,笔者在淮南矿区采集了旱季和雨季的浅层地下水、河水、雨水、沉陷区的积水等不同水体的水样23件,分析了其氢氧稳定同位素组成并与深层地下水进行对比。结果表明:雨季和旱季,该地区采煤沉陷区积水的氢氧稳定同位素组成都非常接近大气降水的氢氧稳定同位素组成,而与深层地下水的氢氧稳定同位素组成相差较大,说明采煤沉陷区的积水来源主要是大气降水补给。采煤沉陷区的沉陷裂隙贯穿了整个新生代地层,使地表水发生下渗与在深部与深层地下水发生不同程度的混合,而深层地下水尚不是"平原水库"的稳定补给源。

关键词: 淮北平原, 采煤沉陷区, 水源, 氢氧稳定同位素

Abstract:

Huainan is an important energy base in Eastern China with a large coal mining subsidence area due to the underground mining. Groundwater aquifers may be broken by the subsidence cracks to become a critical source of subsidence area water. It means that the water cycle system may be damaged due to coal mining. To resolve this geological hazards, establishing "plain reservoir" was suggested by using coal mining subsidence areas. The "plain reservoir" may also solve water shortage during drought year. However, how to evaluate the potential water sources of the "plain reservoirs" is still an issue; and a stable water supply is another question as it is essential for "plain reservoirs". In order to find out whether the subsidence cracks have broken the groundwater system and whether groundwater is a stable source of the subsidence area water, we analyzed the water sources of subsidence areas. We collected 23 water samples from wells, rivers, rainfalls, wetlands and subsidence areas in Huainan mining area in dry and rainy seasons, and compared with the deep groundwater. The composition of hydrogen and oxygen stable isotope is used to trace the source of water. The results show that the atmospheric precipitation is the main water source of subsidence areas. Deep groundwater is not a stable water source to "plain reservoirs"; although groundwater systems are broken by subsidence cracks at present, and surface water filters down and mixes with the deep groundwater.

Key words: Huaibei plain, coal mining subsidence area, source of water, hydrogen and oxygen stable isotope

中图分类号: 

  • P641.6

[1] 袁亮,张炳光,张茂出,等. 淮南煤矿地质工作的回顾与展望[J].中国煤炭,2000,26(1):17-19. Yuan Liang, Zhang Bingguang, Zhang Maochu, et al. Retrospect and Prospect of Geological Work in Huainan Coal Mine[J]. China Coal, 2000, 26(1): 17-19.

[2] 孔德明.淮南矿区薄煤层开采的思考[J].淮南职业技术学院学报,2006,6(3): 41-43. Kong Deming. Thinking of Thin Seams Mining in Huainan Coal Mine Area[J]. Journal of Huainan Vocational & Technical College, 2006, 6(3): 41-43.

[3] 徐良骥,严家平,高永梅.煤矿塌陷水域水环境现状分析及综合利用:以淮南矿区潘一煤矿塌陷水域为例[J].煤炭学报,2009,34(7): 933-937. Xu Liangji, Yan Jiaping, Gao Yongmei. Current Water Environmental Status Analysis of Subsided Water Areas and Its Comprehensive Utilization: A Case of Subsided Water Area in Panyi Coal Mine[J]. Journal of China Coal Society, 2009, 34(7): 933-937.

[4] 李月林,查良松.淮南煤矿塌陷区生态恢复研究[J].资源开发与市场,2008,24(10):899-901. Li Yuelin, Zha Liangsong. Study on Eco-restoration of Mining-induced Subsidence Land in Huainan Coal-mine Area[J]. Resource Development & Market, 2008, 24(10): 899-901.

[5] 王晓波,曹贵昌.淮南矿区采煤沉陷特征与治理对策[J].淮南职业技术学院学报,2006,3(6):13-14. Wang Xiaobo, Cao Guichang. The Characteristics and Countermeasures of Huainan Coal Mining Subsidence Area[J]. Journal of Huainan Vocational & Technical College, 2006, 3(6): 13-14.

[6] 严家平,赵志根,许光泉,等.淮南煤矿开采塌陷区土地综合利用[J].煤炭科学技术,2004,32(10):56-58. Yan Jiaping, Zhao Zhigen, Xu Guangquan, et al. Comprehensive Reclaimed Land Resources from Mining Subsidence Area of Huainan Mining Area[J]. Coal Science and Technology, 2004, 32(10): 56-58.

[7] 徐良骥,严家平.煤矿塌陷区地表水系综合治理[J].煤炭学报,2007,32(5):469-472. Xu Liangji, Yan Jiaping. Comprehensive Treament of the Surface Water System in Subsidence Area of Coal Mine[J]. Journal of China Coal Society, 2007, 32(5): 469-472.

[8] 桂和荣,陈陆望,宋晓梅.皖北矿区地下水中氢氧稳定同位素的漂移特征[J].哈尔滨工业大学学报,2005,37(1):111-114. Gui Herong, Chen Luwang, Song Xiaomei. Drift Features of Oxygen and Hydrogen Stable Isotope in Deep Groundwater in Mining Area of Northern Anhui[J]. Journal of Harbin Institute of Technology, 2005, 37(1): 111-114.

[9] 陈陆望,桂和荣,许光泉,等. 皖北矿区煤层底板岩溶水氢氧稳定同位素特征[J]. 合肥工业大学学报:自然科学版,2003,26(3):374-378. Chen Luwang, Gui Herong, Xu Guangquan, et al. Characteristics of the Hydrogen and Oxygen Stable Isotopes in Karst Water of Seam Floor in the Mining District of the Northern Anhui Province[J]. Journal of Hefei University of Technology:Natural Science, 2003, 26(3):374-378.

[10] 许光泉,沈慧珍.疏降地下水引起地面塌陷浅析:以淮南煤矿区为例[J].中国地质灾害与防治学报,2004,15(4):64-68. Xu Guangquan, Shen Huizhen. Analysis on the Land Collapse Induced by Pumping Groundwater-Huainan Coal Mine as an Example[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(4): 64-68.

[11] 桂和荣. 皖北矿区地下水水文地球化学特征及判别模式研究[D]. 合肥:中国科学技术大学, 2005. Gui Herong. A Study of the Characteristic and Genesis Model of Underroud Water Hydrogeochemistry in Mining Area of North Anhui Province[D]. Hefei:University of Science and Technology of China, 2005.

[12] 胡海英,包为民,王涛,等.氢氧同位素在水文学领域中的应用[J].中国农村水利水电,2007(5):4-8. Hu Haiying, Bao Weimin, Wang Tao, et al. Application of Hydrogen and Oxygen Isotopes in Hydrology[J]. China Rural Water and Hydropower, 2007(5): 4-8.

[13] 张人权. 同位素方法在水文地质中的应用[M]. 北京: 地质出版社,1983. Zhang Renquan. Isotope Application in Hydrogeology[M]. Beijing: Geological Publishing House,2003.

[14] Dansgaard W. Stable Isotopes in Precipitation[J]. Tellus,1964,16(4):436-468.

[15] 汪集旸.同位素水文学与水资源、水环境[J].地球科学:中国地质大学学报,2002,27(5):532-533. Wang Jiyang. Isotope Hydrology and Water Resources Plus Hydro-Environment[J]. Earth Science:Journal of China University of Geosciences, 2002, 27(5): 532-533.

[16] Craig H. Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters[J]. Science,1961,133(3467):1833-1834.

[17] 张应华,仵彦卿,温小虎,等.环境同位素在水循环研究中的应用[J].水科学进展,2006,17(5):738-747. Zhang Yinghua, Wu Yanqing, Wen Xiaohu, et al. Application of Environmental Isotopes in Water Cycle[J]. Advances in Water Science, 2006, 17(5): 738-747.

[18] Clark I D,Fritz P . Environmental Isotopes in Hydrogeology[M].(S.l.):Lewis Publishers,1997.

[19] Deshpande R D, Bhattacharya S K, Jani R A, et al. Distribution of Oxygen and Hydrogen Isotopes in Shallow Groundwaters from Southern India: Influence of a Dual Monsoon System[J]. Journal of Hydrology,2003,271(1):226-239.

[20] Tian L, Liu Z, Gong T, et al. Isotopic Variation in the Lake Water Balance at the Yamdruk-Tso Basin, Southern Tibetan Plateau[J].Hydrological Processes,2008,22(17):3386-3392.

[21] 石辉,刘世荣,赵晓广.稳定性氢氧同位素在水分循环中的应用[J].水土保持学报,2003,17(2):163-166. Shi Hui, Liu Shirong, Zhao Xiaoguang. Application of Stable Hydrogen and Oxygen Isotope in Water Circulation[J]. Journal of Soil and Water Conservation, 2003, 17(2): 163-166.

[22] 钱雅倩,郭吉保,邱永泉.氢氧同位素交换动力学及其地质意义[J].火山地质与矿产,2001,22(4):243-250. Qian Yaqian, Guo Jibao, Qiu Yongquan. The Hydrogen and Oxygen Isotope Exchange Kineticand Its Geological Significance[J]. Volcanology & Mineral Resource, 2001, 22(4): 243-250.

[23] 孙晓旭,陈建生,史公勋,等.蒸发与降水入渗过程中不同水体氢氧同位素变化规律[J]. 农业工程学报,2012(4):100-105. Sun Xiaoxu, Chen Jiansheng, Shi Gongxun, et al. Hydrogen and Oxygen Isotopic Variations of Diffe-rent Water Bodies in Evaporation and Rainfall Infiltration Processes[J]. Transactions of the CSAE, 2012(4):100-105.

[24] 刘俊杰,赵峰,王大国.氢氧同位素组成对阜新煤矿区矿井水来源的解释[J].煤炭学报,2009,34(1):39-43. Liu Junjie, Zhao Feng, Wang Daguo. Explain About the Source of Mine Water by Oxygen and Hydrogen Isotope Composition in Fuxin Coal Mine Area[J]. Journal of China Coal Society, 2009, 34(1):39-43.

[25] 葛涛,储婷婷,刘桂建,等.淮南煤田潘谢矿区深层地下水氢氧同位素特征分析[J].中国科学技术大学学报,2014,44(2):112-118,170. Ge Tao, Chu Tingting, Liu Guijian, et al. Characterisics of Hydrogen and Oxygen Isotopes of Deep Ground Water in the Panxie Mining Area in Huainan Coalfield[J]. Journal of University of Science and Technology of China, 2014, 44(2):112-118,170.

[26] 黄远山.淮南市近50多年气候变化分析[C]//中国气象学会2008年年会气候变化分会场论文集. 北京:中国气象学会,2008. Huang Yuanshan. The Climate Change Analysis of Huainan City Nearly 50 Years[C]//Proceedings of Climate Change Venue of Chinese Meteorological Society Annual Conference. Beijing: Chinese Meteorological Society,2008.

[27] 曹琨.淮河流域气候变化特征分析[EB/OL]. (2010-04-07)[2014-07-10]. 中国科技论文在线, http://www.paper.edu.cn. Cao Kun. Study on the Characteristics of the Huaihe River Basin Climate Change[EB/OL]. (2010-04-07)[2014-07-10]. Chinese Science Paper Online, http://www.paper.edu.cn.

[28] 危润初,肖长来,张余庆,等. 中国降水混沌识别及空间聚类[J]. 吉林大学学报:地球科学版,2014,44(2):626-635. Wei Runchu, Xiao Changlai, Zhang Yuqing, et al. Identification and Spacial Clustering for Chaos of Precipitation of China[J]. Journal of Jilin University: Earth Science Edition,2014,44(2):626-635.

[29] 王又丰,张义丰,刘录祥.淮河流域农业气候资源条件分析[J].安徽农业科学,2001,29(3):399-403. Wang Youfeng, Zhang Yifeng, Liu Luxiang. The Influence of the Climate Resource of Huaihe Watershed on the Agriculture Production[J]. Journal of Anhui Agricultural Sciences, 2001, 29(3): 399-403.

[30] 谭忠成,陆宝宏,孙营营,等.淮北平原区氢氧同位素水文实验研究[J].水电能源科学,2009,27(1):37-39. Tan Zhongcheng, Lu Baohong, Sun Yingying, et al. Hydrological Experiments on Oxygen and Hydrogen Isotopic Variations in Precipitation, Groundwater and Riverwater in Huaibei Plain, Anhui Province[J]. Water Resources and Power, 2009, 27(1): 37-39.

[31] 张爱民,王效瑞,马晓群.淮河流域气候变化及其对农业的影响[J].安徽农业科学,2002,30(6):843-846. Zhang Aimin, Wang Xiaorui, Ma Xiaoqun. Study on the Climate Change and Its Influence on Agriculture in Drainage Area of Northern Anhui[J]. Journal of Anhui Agricultural Sciences, 2002, 30(6): 843-846.

[32] 魏凤英,张婷.淮河流域夏季降水的振荡特征及其与气候背景的联系[J].中国科学:D辑:地球科学,2009,39(10):1360-1374. Wei Fengying, Zhang Ting. Oscillation Characteristics of Summer Pricipitation in the Huaihe River Valley and Relevant Climate Bachground[J]. Science in China :Series D:Earth Sciences, 2009,39(10):1360-1374.

[33] 卢燕宇,吴必文,田红,等.基于 Kriging 插值的19612005年淮河流域降水时空演变特征分析[J].长江流域资源与环境,2011,20(5):567-573. Lu Yanyu, Wu Biwen, Tian Hong, et al. Spatial and Temporal Variability Characteristics of Precipitation in Huai River Basin During 1961 to 2005[J]. Resources and Environment in the Yangtze Basin, 2011, 20(5): 567-573.

[34] 范廷玉,严家平,王顺,等.采煤塌陷水域水质变化规律研究:以淮南张集、顾桥矿为例[EB/OL]. (2011-03-9)[2014-07-10]. 中国科技论文在线, http://www.paper.edu.cn. Fan Tingyu, Yan Jiaping, Wang Shun, et al. Variation of Quality in Subsidence Water Area of Coal Mine: A Case of Zhangji Coal Mine and Guqiao Coal Mine in Huainan City[EB/OL]. (2011-03-09)[2014-07-10]. Chinese Science Paper Online, http://www.paper.edu.cn.

[35] 王慧,王谦谦.近49年来淮河流域降水异常及其环流特征[J].气象科学,2002,22(2):149-158. Wang Hui, Wang Qianqian. Precipitation Anomalies and the Features of Atmospheric Circulation in the Huaihe River Basin[J]. Scientia Meteorologica Sinica, 2002, 22(2): 149-158.

[36] 沈修志,李秀新,薛爱民,等.淮南复向斜区地质-地球物理场特征及煤, 煤成气靶区分析[J].石油实验地质,1993,15(3):235-242. Shen Xiuzhi, Li Xiuxin,Xue Aimin,et al. The Geological-Geophysical Field Properties of the Huainan Synclinorium Area and the Coal,Coal Derived Gas Prospecting Analysis[J]. Experimental Petroleum Geology,1993,15(3):235-242.

[37] 合肥工业大学.顾北煤矿矿井水文地质类型划分报告[R].合肥:合肥工业大学,2010:15. Hefei University of Technology. The Hydrogeological Report of Gubei Coal Mine[R].Hefei:Hefei University of Technology,2010:15.

[38] 闫昆. 淮南地区地质构造特征与环境效应分析[D]. 合肥:合肥工业大学,2012. Yan Kun. Analysis of Geologic Tectonic Characters and Environmental Effect in Huainan Area[D]. Hefei: Hefei University of Technology,2012.

[39] 乔如瑞. 安徽煤矿水文地质环境分析[J]. 技术与创新管理,2010,31(5):618-620. Qiao Rurui. Analysis on the Hydro-Geological Envi-roment in Coal Mines in Anhui Province[J]. Technology and Innovation Management,2010,31(5):618-620.

[40] 刘天骄,张春雷,钱家忠,等. 淮南煤田老矿区地下水微量元素多元统计研究[J].合肥工业大学学报:自然科学版,2011,34(1):119-122. Liu Tianjiao, Zhang Chunlei, Qian Jiazhong, et al. Multivariate Statistical Analysis of Trace Elements in Groundwater of Old Mining Areas of Huainan Coalfield[J]. Journal of Hefei University of Technology:Natural Science,2011,34(1):119-122.

[41] 袁文华,方良成,张成,等. 谢桥煤矿煤系上覆第四纪底砾层隔水性评价[J]. 安徽理工大学学报:自然科学版,2003,23(3):1-5. Yuan Wenhua, Fang Liangcheng, Zhang Cheng, et al. Study on the Impermeability of the Quaternary Bottom Gravels Covered on the Coal Seal in Xieqiao Mine[J]. Journal of Anhui University of Science and Technology:Natural Science,2003,23(3):1-5.

[42] 万正成,王磊. 张集水源地地下水质状况及保护措施[J]. 煤炭科技,2004(1):5-6. Wan Zhengcheng, Wang Lei. Water Quality Protection Measures of the Ground Water at Zhangji[J]. Coal Science & Technology Magazine,2004(1):5-6.

[43] 陈兴海,张平松,吴荣新,等. 淮南潘谢矿区浅部煤层开采时压架致灾水文地质特征分析[J]. 中国煤炭地质,2012,24(11):36-39,62. Chen Xinghai, Zhang Pingsong, Wu Rongxin, et al. Hydrogeological Characteristic Analysis for Support Breakdown Accidents During Shallow Part Coal Mining in Panji-Xieqiao Mining Area, Huainan[J]. Coal Geology of China, 2012,24(11):36-39,62.

[44] 王治朝,凌标灿,方良成. 谢桥矿陷落柱影响区各含水层之间的水力联系研究[J]. 华北科技学院学报,2011,8(2):23-26. Wang Zhichao, Ling Biaocan, Fang Liangcheng. The Study on the Hydraulic Connection Between the Aquifers in the Region Affected by the Sink Holes of Xie-Qiao Coal Mine[J]. North China Institute of Science and Technology, 2011,8(2):23-26.

[45] 孙鹏飞,易齐涛,许光泉 .两淮采煤沉陷积水区水体水化学特征及影响因素[J]. 煤炭学报,2014,39(7):1345-1353. Sun Pengfei, Yi Qitao, Xu Guangquan. Characteristics of Water Chemistry and Their Influencing Factors in Subsidence Waters in the Huainan and Huaibei Mining Areas,Anhui Province[J]. Journal of China Coal Society, 2014,39(7):1345-1353.

[46] 潘凌潇,刘汉湖,何春东. 顾桥矿矿井水深度处理:超滤+反渗透系统计研究[J]. 中国矿业,2013,22(6):47-50. Pan Lingxiao, Liu Hanhu, He Chundong. Design Research (UF+RO) on Advance Treatment of Coal Mine Water in Guqiao Mine[J]. China Mining Magazine, 2013,22(6):47-50.

[47] 张琳,陈宗宇,刘福亮,等. 水中氢氧同位素不同分析方法的对比[J]. 岩矿测试,2011,30(2):160-163. Zhang Lin, Chen Zongyu, Liu Fuliang, et al. Study on Methods for Hydrogen and Oxygen Isotope Analysis of Water Samples[J]. Rock and Mineral Analysis, 2011,30(2):160-163.

[48] Craig H. Isotopic Variations in Meteoric Waters[J]. Science,1961,133:1702-1703.

[49] 郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究[J].科学通报,1983,28(13):801-806. Zheng Shuhui, Hou Fagao, Ni Baoling. The Studies of Hydrogen and Oxygen Stable Isotopes in Atmospheric Precipitation in China[J]. Chinese Science Bulletin, 1983, 28(13): 801-806.

[50] 宋献方,柳鉴容,孙晓敏,等.基于CERN的中国大气降水同位素观测网络[J].地球科学进展,2007,22(7):738-747. Song Xianfang, Liu Jianrong, Sun Xiaomin, et al. Establishment of Chinese Network of Isotopes in Precipitation (CHNIP) Based on CERN[J]. Advances in Earth Science, 2007, 22(7): 738-747.

[51] 杨梅. 基于GIS的淮南老矿区地下水环境特征及突水水源判别模型[D]. 合肥:合肥工业大学,2008. Yang Mei. A GIS Based Groundwater Environmental Characteristies and Diseriminating Model of Water-Inrush Source of the Old Coalfield in Huainan[D]. Hefei:Hefei University of Technology,2008.

[52] 桂和荣,宋晓梅,彭子成.淮南煤田阜凤推覆构造带水文地质特征研究[J].地球学报,2005,26(2):169-172. Gui Herong, Song Xiaomei, Peng Zicheng. The Transmissivity of Fufeng Nappe Structural Belt in Huainan Coalfield[J]. Acta Geoscientica Sinica, 2005,26(2):169-172.

[53] 郑永飞,陈江峰. 稳定同位素地球化学[M]. 北京:科学出版社,2000:1-316. Zheng Yongfei, Chen Jiangfeng. Stable Isotope Geochemistry[M]. Beijing:Science Press,2000:1-316.

[1] 束龙仓, 李姝蕾, 王松, 克热木·阿布都米吉提, 鲁程鹏, 李砚阁, 李伟. 岩溶水源地安全供水的风险评价指标筛选——以娘子关泉水源地为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 805-814.
[2] 刘国庆, 吴时强, 范子武, 周志芳, 谢忱, 乌景秀, 柳杨. 回灌与回扬物理过程的解析推导及灌压变化规律[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1799-1807.
[3] 黄平华,韩素敏. 矿井底板破碎带温度场模型推导及模拟分析[J]. 吉林大学学报(地球科学版), 2014, 44(3): 969-976.
[4] 张庆,张延军,周炳强,黄贤龙,于子望,孙永泉. 天然冷源对地下水源热泵的影响规律[J]. 吉林大学学报(地球科学版), 2013, 43(2): 537-543.
[5] 林君, 蒋川东, 段清明, 王应吉, 秦胜伍, 林婷婷. 复杂条件下地下水磁共振探测与灾害水源探查研究进展[J]. J4, 2012, 42(5): 1560-1570.
[6] 骆祖江, 曾峰, 郭华, 吴刚. 地下饮用水水源保护区划分三维渗流与溶质运移耦合数值模型[J]. J4, 2010, 40(6): 1353-1358.
[7] 孙芳强,侯光才,窦妍, 方长生,姜军,张乐中. 鄂尔多斯盆地白垩系地下水循环特征的水化学证据--以查布水源地为例[J]. J4, 2009, 39(2): 269-0275.
[8] 胡继华,张延军,于子望,吴刚,杨潇瀛,倪福全. 水源热泵系统中地下水流贯通及其对温度场的影响[J]. J4, 2008, 38(6): 992-0998.
[9] 刘佩贵,束龙仓. 傍河水源地地下水水流数值模拟的不确定性[J]. J4, 2008, 38(4): 639-0643.
[10] 戴长雷,迟宝明. 饮马河中游地下水库可行性论证[J]. J4, 2006, 36(01): 78-0084.
[11] 曹剑峰,沈媛媛,平建华,杜全友,刘梅侠. 地下水化学动力学法在大庆前进水源地求参中的应用[J]. J4, 2006, 36(01): 96-0102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!