吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (3): 831-843.doi: 10.13278/j.cnki.jjuese.201603205

• 地质工程与环境工程 • 上一篇    下一篇

广汉市平原区浅层地下水化学演化及其控制因素

陈盟, 吴勇, 高东东, 常鸣   

  1. 成都理工大学地质灾害防治与地质环境保护国家重点实验室, 成都 610059
  • 收稿日期:2015-10-03 出版日期:2016-05-26 发布日期:2016-05-26
  • 通讯作者: 吴勇(1966),男,教授,博士生导师,主要从事地下水资源、地下水的脆弱性与地下水有关的生态系统以及放射性核素迁移地球化学等方面的研究,E-mail:ywu@cdut.edu.cn E-mail:ywu@cdut.edu.cn
  • 作者简介:陈盟(1986),男,博士研究生,主要从事地下水资源、环境水文地质和生态水文地质等方面的研究,E-mail:cattlepen@163.com
  • 基金资助:

    地质灾害防治与地质环境保护国家重点实验室自主研究课题(SKLGP2009Z006);四川省科技厅科技支撑计划项目(2011SZ0172)

Shallow Groundwater Hydrogeochemical Evolution Process and Controlling Factors in Plain Zone of Guanghan City

Chen Meng, Wu Yong, Gao Dongdong, Chang Ming   

  1. State Key Laboratory for Geo-Hazard Prevention and Geo-Environment Protection, Chengdu University of Technology, Chengdu 610059, China
  • Received:2015-10-03 Online:2016-05-26 Published:2016-05-26
  • Supported by:

    Supported by State Key Laboratory for Geohazard Prevention and Geoenvironment Protection Project (SKLGP2009Z006) and Key Technology R & D Program of Science and Technology Department of Sichuan Province(2011SZ0172)

摘要:

为在广汉市城乡规划过程中提供地下水资源开发利用的基础信息,采用矿物风化系统分析、相关性分析、主成分分析和PhreeQC反向水文地球化学模拟等方法对广汉市平原区的浅层地下水的地下水水化学组分进行分析,确定了浅层地下水的水化学演化及控制因素,完成了地下水资源的质量及时空分布特征分析。分析表明:Gibbs图显示岩石风化主导该区地下水水化学特征,风化过程产生离子和次生矿物又经历水解作用,在矿物风化系统稳定场图中显示水样中铝硅酸盐矿物逐渐趋于溶解,碳酸盐矿物处于饱和状态;PhreeQC反向水文地球化学模拟结果显示在水流模拟路径上主要发生了钙蒙脱石、钾长石溶解和高岭石、石英、钠长石的沉淀,以及Ca-Na2之间的阳离子交换吸附作用;离子相关性和主成分分析进一步的验证了溶滤作用、蒸发浓缩作用和阳离子交换吸附作用是引起浅层地下水水化学过程和矿物组成改变的主要原因。研究区地下水水质总体不会对人体健康造成不良影响。

关键词: 广汉市, 水化学演化, 水岩作用, 主成分分析, 反向水文地球化学模拟, 地下水水质

Abstract:

Four methods, including mineral weathering system analysis, correlation analysis, principal component analysis and inverse hydrogeochemical simulation by PhreeQC are used to analyse the chemical composition, identify hydrogeochemical evolution processes and controlling factors, then complete analyzing quality and spatial temporal distribution of shallow groundwater in the plain of Guanghan City, which provides basic data for developing and utilizing groundwater resources exsisting in urban and rural planning process. The analysis showes that Gibbs plots indicate that the groundwater hydrochemical characteristics are dominated by rock weathering, the weathering processes produce ions and then secondary minerals undergo hydrolysis; aluminosilicate minerals of water samples tend to dissolve gradually in the mineral weathering system stability diagram; carbonate minerals are saturated. PhreeQC inverse hydrogeochemical simulation results show what mainly happen in the water flow path simulation are the dissolution of calcium montmorillonite and K-feldspar, the precipitation of kaolinite, quartz and albite, and the cation exchange adsorption between Ca-Na2; The analysis of ion correlation and principal component analysis verifies that leaching, evaporation and concentrating, and cation exchange adsorption are the main cause of hydrochemical process and mineral composition in the shallow groundwater. The groundwater quality in the study area generally will not cause adverse effects on human health.

Key words: Guanghan City, hydrogeochemical evolution, water-rock interaction, principal component analysis, inverse hydrogeochemical simulation, groundwater quality

中图分类号: 

  • P641.3

[1] Morris B L, Lawrence A R L, Chilton P J C,et al.Groundwater and Its Susceptibility to Degradation:A Global Assessment of the Problem and Options forManagement[C]//Early Warning and Assessment Report Series, RS.Nairobi:United Nations Environment Programme.2003:3-6.

[2] 李义连, 王焰新, 周来茹, 等. 地下水矿物饱和度的水文地球化学模拟分析:以娘子关泉域岩溶水为例[J]. 地质科技情报, 2002, 21(1):32-36. Li Yilian, Wang Yanxin, Zhou Lairu, et al. Hydrogeochemical Modeling on Saturation of Minerals in Groundwater:A Case Study at Niangziguan, Northern China[J]. Geological Science and Technology Information, 2002, 21(1):32-36.

[3] GB/T 5750-2006生活饮用水标准检验法[S].北京:中国标准出版社, 2007. GB/T 5750-2006 Standard Examination Methods for Drinking Water[S]. Beijing:China Standard Publishing, 2007.

[4] Todd D K.Groundwater Hydrology[M].2nd ed. New York:Wiley, 1980.

[5] 唐启义. DPS数据处理系统:实验设计、统计分析及数据挖掘[M]. 三版.北京:科学出版社, 2010. Tang Qiyi. Data Processing System:Experimental Design, Statistical Analysis and Data Mining[M].3rd ed. Beijing:Science Press,2010.

[6] Cloutier V, Lefebvre R, Therrien R, et al. Multivariate Statistical Analysis of Geochemical Data as Indicative of the Hydrogeochemical Evolution of Groundwater in a Sedimentary Rock Aquifer System[J]. J Hydrol,2008, 353:294-313.

[7] Kamtchueng B T, Fantong W Y, Ueda A, et al. Assess-ment of Shallow Groundwater in Lake Nyos Catchment (Cameroon, Central-Africa):Implications for Hydrogeochemical Controls and Uses[J]. Environ Earth Sci,2014, 72:3663-3678.

[8] Baeza C, Corominas J. Assessment of Shallow Landslide Susceptibility by Means of Multivariate Statistical Techniques[J]. Earth Surf Process Landforms,2001, 26(12):1251-1263.

[9] Koklu R, Sengorur B, Topal B. Water Quality Assessment Using Multivariate Statistical Methods:A Case Study:Melen River System (Turkey)[J]. Water Resour Manage, 2010, 24:959-978.

[10] Yidana S M, Banoeng-Yakubo B, Akabzaa T M. Analysis of Groundwater Quality Using Multivariate and Spatial Analyses in the Keta Basin, Ghana[J]. J Afr Earth Sci,2010, 58:220-234.

[11] Carroll S,Goonetilleke A. Assessment of High Density of Onsite Wastewater Treatment Systems on a Shallow Groundwater Coastal Aquifer Using PCA[J]. Environmetrics, 2005, 16:257-274.

[12] Koonce J E, Yu Z, Farnham I M, et al. Geochemical Interpretation of Groundwater Flow in the Southern Great Basin[J]. Geosphere, 2006, 2:88-101.

[13] Wu J H, Li P Y, Qian H.Using Correlation and Mul-tivariate Statistical Analysisto Identify Hydrogeochemical Processes Affecting the Major Ion Chemistry of Waters:A Case Study in Laoheba Phosphorite Minein Sichuan, China[J]. Arab J Geosci, 2014, 7:3973-3982.

[14] 冯利华, 马未宇.主成分分析法在地区综合实力评价中的应用[J].地理与地理信息科学, 2004, 20(6):73-75. Feng Lihua,Ma Weiyu. Application of Principal Component Analysis in Evaluation of Area's Comprehensive Strength[J].Geography and Geo-Information Science, 2004, 20(6):73-75.

[15] 刘丽红,束龙仓,王茂枚, 等. 主成分分析法识别岩溶多重介质含水系统水化学和水动力特性:以贵州后寨岩溶典型小流域为例[J].工程勘察, 2009, (6):43-47. Liu Lihong, Shu Longcang, Wang Maomei, et al.Application of Principal Component Analysis to Identify the Hydrodynamic and Hydrochemistry Characteristics in Karst Multimedia System:A Case Study on the Karst in Houzhai of Guizhou[J]. Geotechnical Investigation & Surveying,2009, (6):43-47.

[16] Piper A M. A Graphic Procedure in the Geochemical Interpretation of Water Analysis[R].Washington D C:United States Geological Survey,1953.

[17] Gibbs R J. Mechanisms Controlling World Water Chemi-stry[J].Science, 1970, 17:1088-1090.

[18] 梁云甫. 成都平原更新世黏土类土的工程地质特征[J]. 勘察科学技术, 1987, (6):43-46. Liang Yunfu.The Engineering Geological Characteristics of Chengdu Plain Pleistocene Clay Soil[J]. Site Investigation Science and Technology, 1987, (6):43-46.

[19] 汪波,聂前勇,王运生,等. 也论成都黏土的成因[J]. 地质灾害与环境保护, 2002, 13(1):54-57,64. Wang Bo,Nie Qianyong, Wang Yunsheng, et al.Discussionon the Genetic Mechanism of Chengdu Clay[J]. Journal of Geological Hazards and Environment Preservation, 2002, 13(1):54-57,64.

[20] 邵之刚, 李代钧, 李永昭.成都平原更新世黏土的地质特征[C]//中国地质学会第四纪冰川与第四纪地质专业委员会, 江苏省地质学会.第四纪冰川与第四纪地质论文集:一.北京:地质出版社, 1984:142-152. Shao Zhigang, Li Daijun, Li Yongzhao. Geological Characteristics of Pleistocene Clay in the Chengdu Plain[C]//Commission on Quaternary Glaciology and Geology of the Geological Society of China, Geological Society of Jiangsu Province.Contribution to the Quaternary Glaciology and Quaternary Geology:1. Beijing:Geological Publishing House, 1984:142-152.

[21] Appelo C A J, Postma D. Chemical Analysis of Ground-water,Geochemistry, Groundwater and Pollution[M].2nd ed. Balkema:Rotterdam, 2005.

[22] 高东东, 吴勇, 王春红. 彭州通济地区水文地球化学特征及成因分析[J]. 地下水, 2010, 32(6):49-53,132. Gao Dongdong, Wu Yong, Wang Chunhong.Hydro-Geochemical Characteristics and Formation Reason of Shallow Ground Water in Tongji Area of Pengzhou[J]. Ground Water, 2010, 32(6):49-53,132.

[23] Tardy Y. Characterization of the Principal Weathering Types by the Geochemistry of Waters from some European and African Crystalline Massifs[J]. Chem Geol,1971, 7:253-271.

[24] 沈照理.水文地球化学基础[M].北京:地质出版社, 1993. Shen Zhaoli. Basic of Hydrogeochemistry[M].Beijing:Geological Publishing House, 1993.

[25] 姜光辉, 郭芳,于奭.岩溶水系统的水化学曲线及其在水文地质研究中的应用[J]. 吉林大学学报(地球科学版), 2015,45(3):899-907. Jiang Guanghui, Guo Fang, Yu Shi. Chemographs of Karst Water System and Its New Application in Hydrogeological Survey[J]. Journal of Jinlin University(Earth Science Edition), 2015,45(3):899-907.

[26] Bouwer H. Integrated Water Management:Emerging Issues and Challenges[J]. Agricultural Water Management,2000,45:217-228.

[27] WHO. Guidelines for Drinking Water Quality[M].4th ed. WHO, 2011.

[28] GB 5749-2006生活饮用水卫生标准[S].北京:中国标准出版社, 2007. GB 5749-2006 Standard for Drinking Water Quality[S]. Beijing:China Standard Publishing, 2007.

[29] Ong C N, Grandjean A C, Heaney R P. The Mineral Composition of Water and Its Contribution to Calcium and Magnesium Intake[C]//Calcium and Magnesium in Drinking-Water Public Health Significance. Geneva:WHO, 2009:36-58.

[30] 李明辉, 王剑, 王建祥. 锅炉给水中氯离子危害浅析[J]. 装备制造技术, 2012(9):240-241. Li Minghui, Wang Jian, Wang Jianxiang. Research of Disadvantage on ChlorideIon in Boiler Feed-Water[J]. Equipment Manufactring Technology, 2012(9):240-241.

[31] 胡玉福, 邓良基, 张世熔,等. 四川盆地西缘浅层地下水铁、锰含量的空间变异特征[J]. 生态学报, 2009, 29(2):797-803. Hu Yufu,Deng Liangji,Zhang Shirong, et al. Spatial Variability of Iron and Manganese Contents in Shallow Groundwater in the West of Sichuan Basin[J]. CtaEcologica Sinica, 2009, 29(2):797-803.

[1] 束龙仓, 李姝蕾, 王松, 克热木·阿布都米吉提, 鲁程鹏, 李砚阁, 李伟. 岩溶水源地安全供水的风险评价指标筛选——以娘子关泉水源地为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 805-814.
[2] 董维红, 孟莹, 王雨山, 武显仓, 吕颖, 赵辉. 三江平原富锦地区浅层地下水水化学特征及其形成作用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 542-553.
[3] 杜超, 肖长来, 吕军, 田浩然. 地下水水质实时预报系统开发及应用:以下辽河平原为例[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1625-1632.
[4] 于磊,邱殿明,刘莉,凌峰,李巍,胡广鑫,刘国才. 基于SPCA和AHP联合方法的滦河流域生态环境脆弱性变化规律分析[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1588-1594.
[5] 陈圣波,刘彦丽,杨倩,周超,赵靓. 植被覆盖区卫星高光谱遥感岩性分类[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1959-1965.
[6] 林学钰, 张文静, 何海洋, 石旭飞, 王寒梅, 焦珣. 人工回灌对地下水水质影响的室内模拟实验[J]. J4, 2012, 42(5): 1404-1409.
[7] 苏小四, 谷小溪, 孟婧莹, 张文静, 王寒梅, 焦珣. 人工回灌条件下多组分溶质的反应迁移模拟[J]. J4, 2012, 42(2): 485-491.
[8] 蒋立军, 邢立新, 梁一鸿, 潘军, 梁立恒, 黄竞铖. 融合化探信息的遥感异常提取[J]. J4, 2011, 41(3): 932-936.
[9] 张文, 陈剑平, 秦胜伍, 张晨, 李明, 马建全. 基于主成分分析的FCM法在泥石流分类中的应用[J]. J4, 2010, 40(2): 368-372.
[10] 陈永良, 林楠, 李学斌. 求解大样本核主成分分析模型的Lanczos算法[J]. J4, 2010, 40(1): 222-226.
[11] 辛 馨,杨俊鹏,赵奎涛,胡 克. 双台河口土壤中Mn、Zn和Rb的变化规律及其原因分析[J]. J4, 2007, 37(5): 983-0987.
[12] 杜新强,齐素文,廖资生,李砚阁. 人工补给对含水层水质的影响[J]. J4, 2007, 37(2): 293-297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!