吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (3): 836-845.doi: 10.13278/j.cnki.jjuese.20160364
王洁1,2,3, 宫辉力1,2,3, 陈蓓蓓1,2,3, 高明亮1,2,3, 周超凡1,2,3, 梁悦1,2,3, 陈文锋1,2,3
Wang Jie1,2,3, Gong Huili1,2,3, Chen Beibei1,2,3, Gao Mingliang1,2,3, Zhou Chaofan1,2,3, Liang Yue1,2,3, Chen Wenfeng1,2,3
摘要: 北京市地面沉降自20世纪60年代发现以来一直呈快速发展的趋势。不均匀地面沉降导致建筑物开裂、地基下沉,损害地下管道工程等基础设施,威胁城市安全。为了研究地面沉降发展的特征,分析其演化趋势,本文选取2011—2014年的27景Radarsat-2数据,采用干涉点目标分析技术,获取该时段北京平原区地面沉降时序监测信息;在此基础上,结合Morlet小波分析方法,根据相干点密度差异选取4个典型地面沉降区,分析其地面沉降多尺度演变特征。结果表明:地面沉降速率在空间分布上存在差异性,最大沉降速率为162.70 mm/a,年均沉降速率50.08 mm/a;地面沉降在时间域具有明显的局部周期性变化特征。在28 T (1 T表示1个24 d的时间段)的时间尺度下,存在着约13.3月的时间周期,不同位置还存在不同的不稳定震荡周期。
中图分类号:
[1] 郑铣鑫,武强,侯艳声,等. 关于城市地面沉降研究的几个前沿问题[J].地球学报, 2002, 23(3):279-282. Zheng Xixin, Wu Qiang, Hou Yansheng, et al. Some Frontier Problems on Land Subsidence Research[J]. Acta Geoscientica Sinica, 2002, 23(3):279-282. [2] 贾三满,王海刚,赵守生,等. 北京地面沉降机理研究初探[J].城市地质, 2007,2(1):20-26. Jia Sanman, Wang Haigang, Zhao Shousheng, et al. A Tentative Study of the Mechanism of Land Subsidence in Beijing[J]. City Geology, 2007,2(1):20-26. [3] Galloway D L, Hudnut K W, Ingebritsen S E, et al. Detection of Aquifer System Compaction and Land Subsidence Using Interferometric Synthetic Aperture Radar, Antelope Valley, Mojave Desert, California[J]. Water Resources Research, 1998, 34(10):2573-2585. [4] Ferretti A, Prati C, Rocca F. NonlinearSubsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(5):2201-2212. [5] Werner C, Wegmuller U, Wiesmann A, et al. Inter-ferometric Point Target Analysis with JERS-1 L-Band SAR Data[C]//Geoscience and Remote Sensing Symposium. IGARSS'03 Proceedings. Toulouse:IEEE, 2003:4359-4361. [6] 俞晓莹,姜成岭,张建,等. IPTA监测圣佩德罗湾港口地表时序沉降[J].测绘科学, 2012, 37(6):21-25. Yu Xiaoying, Jiang Chengling, Zhang Jian, et al. IPTA Monitoring Long-Term Series Surface Deformation of SAN PEDRO[J]. Science of Surveying & Mapping, 2012, 37(6):21-25. [7] Zhang Yonghong, Zhang Jixian, Wu Hongan, et al. Monitoring of Urban Subsidence with SAR Interferometric Point Target Analysis:A Case Study in Suzhou, China[J]. International Journal of Applied Earth Observation & Geoinformation, 2011, 13(5):812-818. [8] 张海波,李宗春,许兵,等. IPTA方法在地面沉降监测中的应用[J].测绘科学技术学报,2016, 33(2):145-149. Zhang Haibo, Li Zongchun, Xu Bing, et al. Ground Subsidence Monitoring Using Interferometric Point Target Analysis[J]. Journal of Geomatics Science and Technology, 2016, 33(2):145-149. [9] 张雯,宫辉力,陈蓓蓓,等. 北京典型区地面沉降演化特征与成因分析[J].地球信息科学学报, 2015, 17(8):909-916. Zhang Wen, Gong Huili, Chen Beibei, et al. Evolution and Genetic Analysis of Land Subsidence in Beijing Typical Area[J]. Journal of Geo-Information Science, 2015, 17(8):909-916. [10] 杨艳,贾三满,王海刚.北京平原区地面沉降现状及发展趋势分析[J].上海地质,2010(4):23-28. Yang Yan, Jia Sanman, Wang Haigang. The Status and Development of Land Subsidence in Beijing Plain[J]. Shanghai Geology, 2010(4):23-28. [11] 葛大庆,殷跃平,王艳,等. 地面沉降-回弹及地下水位波动的InSAR长时间序列监测:以德州市为例[J].国土资源遥感,2014,26(1):103-109. Ge Daqing, Yin Yueping, Wang Yan, et al. Seasonal Subsidence-Rebound and Ground Water Level Changes Monitoring by Using Coherent Target Insar Technique:A Case Study of Dezhou,Shandong[J]. Remote Sensing for Land & Resources, 2014, 26(1):103-109. [12] 雷坤超,陈蓓蓓,贾三满,等. 基于PS-InSAR技术的北京地面沉降特征及成因初探[J]. 光谱学与光谱分析, 2014,34(8):2185-2189. Lei Kunchao, Chen Beibei, Jia Sanman, et al. Primary Investigation of Formation and Genetic Mechanism of Land Subsidence Based on PS-InSAR Technology in Beijing[J]. Spectroscopy and Spectral Analysis, 2014, 34(8):2185-2189. [13] Chai Jinchun, Shen Shuilong, Zhu Hehua, et al. Land Subsidence Due to Droundwater Drawdown in Shanghai[J]. Géotechnique, 2004, 54(2):143-147. [14] Amelung F, Galloway D L, Bell J W, et al. Sensing the Ups and Downs of Las Vegas:InSAR Reveals Structural Control of Land Subsidence and Aquifer-System Deformation[J]. Geology, 1999, 27(6):483-486. [15] Chaussard E, Amelung F, Abidin H, et al.Sinking Cities in Indonesia:ALOS PALSAR Detects Rapid Subsidence due to Groundwater and Gas Extraction[J].Remote Sensing of Environment,2013, 128(1):150-161. [16] 陈蓓蓓,宫辉力,李小娟,等. PS-InSAR技术与多光谱遥感建筑指数的载荷密度对地面沉降影响的研究[J]. 光谱学与光谱分析, 2013, 33(8):2198-2202. Chen Beibei, Gong Huili, Li Xiaojuan, et al. The Impact of Load Density Differences on Land Subsidence Based on Build -Up Index and PS -InSAR Technology[J]. Spectroscopy and Spectral Analysis, 2013, 33(8):2198-2202. [17] 付延玲, 骆祖江, 廖翔,等. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016,46(6):1781-1789. Fu Yanling, Luo Zujiang, Liao Xiang, et al. A Three-Dimensional Full Coupling Model to Simulate and Predict Land Subsidence Caused by High-Rise Building. Journal of Jilin University(Earth Science Edition), 2016, 46(6):1781-1789. [18] 周超凡, 宫辉力, 陈蓓蓓,等. 利用数据场模型评价北京地面沉降交通载荷程度[J]. 吉林大学学报(地球科学版), 2017,47(5):1511-1520. Zhou Chaofan, Gong Huili, Chen Beibei, et al. Assessment to Ground Subsidence Traffic Load in Beijing Area Using Data Field Mode[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5):1511-1520. [19] 王文圣,丁晶,向红莲.水文时间序列多时间尺度分析的小波变换法[J].四川大学学报(工程科学版),2002, 34(6):14-17. Wang Wensheng, Ding Jing, Xiang Honglian. Multiple Time Scales Analysis of Hydrological Time Series With Wavelet Transform[J]. Journal of Sichuan University(Engineering Science Edition), 2002, 34(6):14-17. [20] 王文圣,丁晶,向红莲. 小波分析在水文学中的应用研究及展望[J]. 水科学进展, 2002,13(4):515-520. Wang Wensheng, Ding Jing, Xiang Honglian. Application and Prospect of Wavelet Analysis in Hydrology[J]. Advances in Water Science, 2002,13(4):515-520. [21] 郭琳,宫辉力,朱锋,等. 基于小波分析的地下水水位与降水的周期性特征研究[J].地理与地理信息科学,2014,30(2):35-38. Guo Lin, Gong Huili, Zhu Feng, et al. Cyclical Characteristics of Groundwater Level and Precipitation Based on Wavelet Analysis[J]. Geography and Geo-Information Science, 2014,30(2):35-38. [22] 倪夏梅,陈元芳,刘勇,等. 基于小波分析的枯水径流多时间尺度分析[J].水电能源科学, 2010, 28(3):6-8. Ni Xiamei, Chen Yuanfang, Liu Yong, et al. Multiple Time Scale Analysis of the Low Water Runoff Based on Wavelet Analysis[J]. Water Resources & Power, 2010, 28(3):6-8. [23] Grinsted A, Moore J C, Jevrejeva S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series[J]. Nonlinear Processes in Geophysics, 2004, 11(5/6):561-566. [24] 朱锋,宫辉力,李小娟,等. 基于InSAR和小波变换的不均匀沉降段识别:以京津高铁北京段为例[J].地理与地理信息科学, 2014, 30(1):23-27. Zhu Feng, Gong Huili, Li Xiaojuan, et al. Identification of Uneven Land Subsidence Segment Based on the InSAR and Wavelet Transformation:A Case Study of Beijing Section of Beijing-Tianjin High-Speed Railway[J]. Geography and Geo-Information Science, 2014, 30(1):23-27. [25] Gao Mingliang, Gong Huili, Chen Beibei, et al. In SAR Time-Series Investigation of Long-Term Ground Displacement at Beijing Capital International Airport, China[J]. Tectonophysics, 2016, 691:271-281. [26] 姜媛, 杨艳, 王海刚,等. 北京平原区地面沉降的控制与影响因素[J].上海国土资源, 2014,35(4):130-133. Jiang yuan, Yang Yan, Wang Haigang, et al. Factors Controlling Land Subsidence on the Beijing Plain[J]. Shanghai Land & Resources,2014,35(4):130-133. |
[1] | 周超凡, 宫辉力, 陈蓓蓓, 贾煦, 朱锋, 郭琳. 利用数据场模型评价北京地面沉降交通载荷程度[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1511-1520. |
[2] | 付延玲, 骆祖江, 廖翔, 张建忙. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1781-1789. |
[3] | 秦喜文, 刘媛媛, 王新民, 董小刚, 张瑜, 周红梅. 基于整体经验模态分解和支持向量回归的北京市PM2.5预测[J]. 吉林大学学报(地球科学版), 2016, 46(2): 563-568. |
[4] | 付延玲,金玮泽,陈兴贤,谈金忠. 高层建筑荷载引发地面沉降与隆起变形三维数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1587-1594. |
[5] | 陈荣波,束龙仓,鲁程鹏,李伟. 含水层压密引起其特征参数变化的实验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1958-1965. |
[6] | 李文运, 崔亚莉, 苏晨, 张伟, 邵景力. 天津市地下水流-地面沉降耦合模型[J]. J4, 2012, 42(3): 805-813. |
[7] | 付延玲. 基于地面沉降控制的区域性松散沉积层地下水可采资源规划评价[J]. J4, 2012, 42(2): 476-484. |
[8] | 卢文喜, 陈社明, 王晨子, 刘磊, 贾洪玮, 吕德全. 基于小波变换的大安地区年降水量变化特征[J]. J4, 2010, 40(1): 121-127. |
[9] | 骆祖江, 曾峰, 李颖. 地下水开采与地面沉降控制三维全耦合模型研究[J]. J4, 2009, 39(6): 1080-1088. |
[10] | 于 军,苏小四,朱 琳,段福洲,高 立,吴曙亮. 苏锡常地区地面沉降地质结构三维可视化模型虚拟现实系统研究[J]. J4, 2007, 37(2): 393-399. |
|