吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (5): 1520-1526.doi: 10.13278/j.cnki.jjuese.201605208

• 地质工程与环境工程 • 上一篇    下一篇

铅同位素示踪在大气降尘重金属污染来源解析中的应用

胡恭任1,2, 于瑞莲1, 胡起超1, 温先华1, 刘贤荣1, 张希琳1   

  1. 1. 华侨大学环境科学与工程系, 福建 厦门 361021;
    2. 东华理工大学核资源与环境教育部重点实验室, 南昌 330013
  • 收稿日期:2016-01-05 出版日期:2016-09-26 发布日期:2016-09-26
  • 作者简介:胡恭任(1966-),男,教授,主要从事环境地球化学方面的研究,E-mail:grhu@hqu.edu.cn
  • 基金资助:

    国家自然科学基金项目(21377042,21477042);福建省自然科学基金项目(2014J01176);华侨大学2014年国家级大学生创新创业训练计划项目(201410385018)

Tracing Heavy Metal Sources in the Atmospheric Dustfall Using Stable Lead Isotope

Hu Gongren1,2, Yu Ruilian1, Hu Qichao1, Wen Xianhua1, Liu Xianrong1, Zhang Xilin1   

  1. 1. Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, Fujian, China;
    2. Key Laboratory of Nuclear Resources and Environment, Ministry of Education, East China University of Technology, Nanchang 330013, China
  • Received:2016-01-05 Online:2016-09-26 Published:2016-09-26
  • Supported by:

    Supported by National Natural Science Foundation of China(21377042,21477042),National Natural Science Foundation of Fujian Province(2014J01176) and Innovation and Entrepreneurship Training Program of National College Students, Huaqiao University (201410385018)

摘要:

为了分析大气降尘中铅的污染来源,解析各污染源对大气降尘铅的相对贡献值,在厦门市不同功能区采集了29个大气降尘样品。用热电质谱仪测定了大气降尘的总铅同位素组成,用ICP-MS测定样品酸可溶相铅同位素组成。结果表明,厦门市大气降尘铅同位素206Pb/207Pb值变化较大,为1.111 9~1.173 8;酸可溶相铅206Pb/207Pb值与福建土壤残渣相206Pb/207Pb值相差较大,表明厦门市大气降尘受人类活动来源铅的影响较大;酸可溶相铅206Pb/207Pb值明显小于总量铅206Pb/207Pb值。铅同位素示踪表明,厦门市大气降尘铅主要来源是燃煤,其次是自然来源和汽车尾气。三元混合模型分析表明,燃煤、自然来源、汽车尾气对厦门市大气降尘总量铅的贡献率分别为48.57%、20.29%、31.14%。

关键词: 大气降尘, 铅同位素, 来源分析, 厦门市

Abstract:

In order to identify the sources of lead pollution in the atmospheric dustfall, as well as comfirm the contribution of each source to such pollution. We obtained 29 atmospheric dustfall samples in the different areas of Xiamen City. Total Pb isotopic composition of each sample was analyzed by thermal mass spectrometry and acid soluble Pb isotopic ratios were determined by ICP-MS. The results indicated that dustfall Pb isotope of 206Pb/207Pb in Xiamen City varied widely with the ranges of 1.111 9 to 1.173 8.Pb isotope of 206Pb/207Pb in acid solution was different from the ratios in residual form soil of Fujian, indicating the powerful impact of external lead sources. Pb isotopic composition of acid solution decreased significantly than total Pb isotopic composition. Lead isotope tracing techniques showed coal-fired was the main source of lead pollution in Xiamen City dustfall, followed by nature source and vehicle exhaust. Total and acid soluble Pb isotope composition of coal pile was closed to coal-fired, suggesting coal pile was a potential source. The results of ternary hybrid model were as follows: the contribution of coal-fired, nature source and vehicle exhaust to total lead in dustfall were 48.57%, 20.29% and 31.14%, respectively.

Key words: dustfall, lead isotopic, source apportionment, Xiamen City

中图分类号: 

  • X823

[1] Park E J, Kim D S, Park K. Monitoring of Ambient Particles and Heavy Metals in a Residential Area of Seoul, Korea[J]. Environmental Monitoring and Assessment, 2008, 137(1/2/3):441-449.

[2] S'wietlik R, Molik A, Molenda M, et al. Chromium (Ⅲ/VI) Speciation in Urban Aerosol[J]. Atmospheric Environment, 2011, 45(6):1364-1368.

[3] Davies B E. Heavy Metals Contaminated Soils in an Old Industrial Area of Wales, Great Britain:Source Identification Through Statistical Data Interpretation[J]. Water, Air and Soil Pollution, 1996, 101:85-98.

[4] Blais J M. Using Isotopic Tracers in Lake Sediments to Assess Atmospheric Transport of Lead in Eastern Canada[J]. Water, Air and Soil Pollution, 1996, 92(3/4):329-342.

[5] Belamri M, Benrachedi K. Evaluation of Air Pollution by Heavy Metals on Bab El Oued Zone of Algiers[J]. Asian Journal of Chemistry, 2010, 22(4):2753-2760.

[6] Ashley T, Seen A J. Historcal Lead Isotope Record of a Sediment Core from the Derwent River(Tasmania,Australia):A Multiple Source Environment[J].Science of the Total Environment,2012,424:153-161.

[7] Ewing S A, Christensen J N, Brown S T, et al. Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California[J]. Environmental Science and Technology, 2010,44(23):8911-8916.

[8] 孙锐,舒帆,郝伟,等. 典型Pb-Zn矿区土壤重金属污染特征与铅同位素源解析[J]. 环境科学, 2011,32(3):1146-1153. Sun Rui, Shu Fan, Hao Wei, et al. Heavy Metal Contamination and Pb Isotopic Composition in Natural Soils Around a Pb/Zn Mining and Smelting Area[J]. Environmental Science, 2011, 32(4):1146-1153.

[9] 董辰寅,张卫国,王冠,等. 上海宝山区城市土壤铅污染来源的同位素判别[J]. 环境科学, 2012, 33(3):754-759. Dong Chenyin, Zhang Weiguo, Wang Guan, et al. Lead Isotope Signatures and Source Identification in Urban Soil of Baoshan District, Shanghai[J]. Environmental Science, 2012, 33(3):754-759.

[10] 赵多勇,魏益民,魏帅, 等. 基于同位素解析技术的大气降尘铅污染来源研究[J]. 安全与环境学报, 2013, 13(4):107-110. Zhao Duoyong, Wei Yinmin, Wei Shuai, et al. Pb Pollution Source Identification and Apportionment in the Atmospheric Deposits Based on the Lead Isotope Analysis Technique[J]. Journal of Safety and Environment, 2013,13(4):107-110.

[11] Zhao J P, Zhang F W, Xu Y, et al. Chemical Charac-teristics of Particulate Matter During a Heavy Dust Episode in a Coastal City, Xiamen[J]. Aerosol and Air Quality Research, 2011, 11(3):300-309.

[12] He Y, Chen F R, Zhuang Z X, et al. Study on Elemental Concentration in Air Particulate Matter by ICP-MS[J]. Environmental Chemistry, 2003, 22(3):294-298.

[13] Lee B, Zhu L M, Tang J W, et al. Seasonal Variations in Elemental Composition of Aerosols in Xiamen, China[J]. Geochemical Journal, 2009, 43(6):423-440.

[14] 张福旺,赵金平,陈进生,等.滨海城市气溶胶中颗粒态汞的分布特征[J]. 环境科学,2010, 31(10):2273-2278. Zhang Fuwang, Zhao Jinping, Chen Jinsheng, et al. Distribution Characteristics of Particulate Mercury in Aerosol in Coastal City[J]. Environmental Science, 2010,31(10):2273-2278.

[15] Zhu L M, Tang J W, Lee B, et al. Lead Concentrations and Isotopes in Aerosols from Xiamen, China[J]. Marine Pollution Bulletin, 2010, 60(11):1946-1955.

[16] 胡恭任,于瑞莲,郑志敏. 铅稳定同位素在沉积物重金属污染溯源中的应用[J]. 环境科学学报, 2013, 33(5):1326-1331. Hu Gongren, Yu Ruilian, Zheng Zhimin. Application of Stable Lead Isotopes in Tracing Heavy-Metal Pollution Sources in the Sediments[J]. Acta Scientiae Circumstantiae,2013, 33(5):1326-1331.

[17] 于瑞莲,胡恭任,林燕萍, 等.泉州市不同功能区土壤铅同位素组成及其来源分析[J].环境科学学报, 2013, 33(7):1996-2003. Yu Ruilian, Hu Gongren, Lin Yanping, et al. Lead Isotope Signatures and Source Identification in Urban Soils from Different Functional Areas of Quanzhou City[J]. Acta Scientiae Circumstantiae,2013,33(7):1996-2003.

[18] 中国环境监测总站. 中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990:330-483. China National Environmental Monitoring Centre. Elements Background Value of Chinese Soil[M]. Beijing:China Environment Science Press,1990:330-483.

[19] Cheng H F, Hu Y A. Lead (Pb) Isotopic Finger-printing and Its Applications in Lead Pollution Studies in China:A Review[J]. Environmental Pollution, 2010, 158(5):1134-1146.

[20] Monna F, Lancelot J, Croudace Ian W, et al. Pb Isotopic Composition of Airborne Particulate Material from France and the Sourthern United Kingdom:Implications for Pb Pollution Sources in Urban Areas[J]. Environmental Science Technology, 1997, 31(8):2277-2286.

[1] 要梅娟, 刘家军, 翟德高, 王建平, 邢永亮. 大兴安岭南段多金属成矿带硫、铅同位素组成及其地质意义[J]. J4, 2012, 42(2): 362-373.
[2] 章永梅, 顾雪祥, 程文斌, 董树义, 黄志全, 李福亮, 杨伟龙. 内蒙古柳坝沟金矿床40Ar-39Ar年代学及铅同位素[J]. J4, 2011, 41(5): 1407-1422.
[3] 王永在, 姚德, 李功胜, 王志国. 淄博市大气降尘矿物组合特征及其环境意义[J]. J4, 2010, 40(6): 1429-1434.
[4] 殷汉琴, 周涛发, 张鑫, 袁峰, 李湘凌, 陈永宁, 陈兴仁, 陈富荣, 贾十军. 铜陵市大气降尘中铜元素的污染特征[J]. J4, 2009, 39(4): 734-738.
[5] 杨忠平,卢文喜,辛欣,李俊,李平. 长春市城市土壤铅同位素组成特征及其来源解析[J]. J4, 2008, 37(4): 663-0669.
[6] 张万益,聂凤军,刘 妍,江思宏,徐 智,胡 朋,赖新荣,皮晓东. 内蒙古东乌旗阿尔哈达铅-锌-银矿床硫和铅同位素研究[J]. J4, 2007, 37(5): 868-0877.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!