吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (6): 1711-1723.doi: 10.13278/j.cnki.jjuese.201606110

• 地质与资源 • 上一篇    下一篇

西藏柯月Pb-Zn-Sb-Ag多金属矿床I号矿体原生晕地球化学特征

程文斌1,2, 尹力3, 陈翠华1,2, 宋玉坤4, 李关清5, 张兴国5, 夏抱本5, 达瓦次仁5   

  1. 1. 成都理工大学地球科学学院, 成都 610051;
    2. 成都理工大学构造成矿成藏国土资源部重点实验室, 成都 610051;
    3. 成都蒲江县国土资源局, 成都 611630;
    4. 黑龙江省区域地质调查所, 哈尔滨 150036;
    5. 西藏地勘局区域地质调查大队, 拉萨 851400
  • 收稿日期:2016-03-23 出版日期:2016-11-26 发布日期:2016-11-26
  • 作者简介:程文斌(1982),男,讲师,主要从事矿床学、地球化学方面研究,E-mail:haitianyisu@126.com
  • 基金资助:
    教育部高等学校博士学科点专项科研基金项目(20125122120013);国家自然科学青年基金项目(41302066);国家自然科学基金面上项目(41372093);全国矿产资源潜力评价项目(1212010813025,1212011121023)

Geochemical Characteristics of Primary Halos in No. I Ore Body of Keyue Pb-Zn-Sb-Ag Polymetallic Deposit, Tibet

Cheng Wenbin1,2, Yin Li3, Chen Cuihua1,2, Song Yukun4, Li Guanqing5, Zhang Xingguo5, Xia Baoben5, Dawa Ciren5   

  1. 1. College of Earth Sciences, Chengdu University of Technology, Chengdu 610051, China;
    2. Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation, Ministry of Land and Resources, Chengdu University of Technology, Chengdu 610051, China;
    3. Pujiang County Land Resources Bureau, Chengdu 611630, China;
    4. Heilongjiang Province Regional Geological Survey, Harbin 150036, China;
    5. Regional Geological Survey Team, Tibet Bureau of Geology and Exploration, Lhasa 851400, China
  • Received:2016-03-23 Online:2016-11-26 Published:2016-11-26
  • Supported by:
    Supported by Doctoral Fund of Ministry of Education of China (20125122120013), National Natural Science Foundation of China (41302066), National Natural Science Foundation of China (General Program; 41372093) and National Mineral Resources Potential Evaluation Project (1212010813025, 1212011121023)

摘要: 西藏柯月Pb-Zn-Sb-Ag多金属矿床位于雅鲁藏布江缝合带(IYS)与藏南拆离系(STDS)之间的北喜马拉雅成矿带。该矿床经详查验证,4 300 m以浅的矿体赋存于日当组钙质板岩夹薄层泥晶灰岩中,严格受北东向断裂控制,但深部延伸不明。本文通过该矿床I号矿体原生晕地球化学特征分析,对此问题进行初步探讨。研究表明,前缘晕元素为Hg、As、Tl,近矿晕元素为Pb、Zn、Sb、Ag、Au、Cd、Cu、Mn,尾晕元素为Sn、In、Bi;采用改良的格里戈良分带指数法计算分带序列为In-Mn-As-Cu-Zn-Cd-Bi-Pb-Sn-Hg-Tl-Ag-Au-Sb,重心法计算分带序列为In-Mn-As-Cu-Cd-Zn-Hg-Bi-Sn-Pb-Ag-Sb-Tl-Au;同时,讨论原生晕地球化学参数变化规律,并以各元素的几何平均值累乘比建立矿体的剥蚀参数模型及矿体原生晕叠加理想模型。综合以上分析,推测矿床有多次成矿作用叠加,上部存在剥蚀至尾部的矿体,而深部可能有矿体延伸。

关键词: 原生晕地球化学特征, 分带序列, 多金属矿床, 柯月矿床, 西藏

Abstract: The Keyue Pb-Zn-Sb-Ag polymetallic deposit is located in the Himalaya metallogic belt between the IYS and STDS. The general exploration shows that ore bodies above 4 300 m are mainly distributed in calcareous slate within thin micrite of the Ridang Formation(J1r) and strictly controlled by N-E faults. While deep extension of ore bodies are unknown. Based on the analysis of geochemical characteristics of the primary halos about the No. I ore body, the deep extension is discussed in this paper. Studies show that the frontal elements are Hg, As, Tl and the near-ore indicator elements are Pb, Zn, Sb, Ag, Au, Cd, Cu, Mn and the rear elements are Sn, In, Bi. According to the Grigorian's zoning index method and the barycenter method, the axail zoning downward follows in the sequences of In-Mn-As-Cu-Zn-Cd-Bi-Pb-Sn-Hg-Tl-Ag-Au-Sb (the Grigorian's zoning index method) and In-Mn-As-Cu-Cd-Zn-Hg-Bi-Sn-Pb-Ag-Sb-Tl-Au (the barycenter method). The change rules of the primary halos geochemical parameters are discussed, the erosion parameters models are established by the geometric averages of elements, and the ideal zoning models of the primary dispersion halos is established by comprehensive analysis. In conclusion, the speculative results can be listed as followings. Firstly, there are multiple superposition of mineralization. Secondly, there are ore bodies eroded to tail at the upper section, Thirdly, some ore bodies may extend to the depth.

Key words: geochemical characteristics of primary halos, zoning sequence, polymetallic deposit, Keyue deposit, Tibet

中图分类号: 

  • P618.4
[1] 聂凤军,胡朋,江思宏,等.藏南地区金和锑矿床(点)类型及其时空分布特征[J].地质学报,2005,79(3):373-385. Nie Fengjun, Hu Peng, Jiang Sihong, et al. Type and Temporal-Spatial Distribution of Gold and Antimony Deposits (Prospects) in Southern Tibet, China[J]. Acta Geologica Sinica, 2005, 79(3): 373-385.
[2] Yang Zhusen, Hou Zengqian, Meng Xiangjin,et al. Post-Collisional Sb and Au Mineralization Related to the South Tibetan Detachment System, Himalayan Orogeny[J]. Ore Geology Reviews, 2009, 36:194-212.
[3] Zhai Wei, Sun Xiaoming, Yi Jianzhou,et al. Geology, Geochemistry, and Genesis of Orogenic Gold-Antimony Mineralization in the Himalayan Orogen, South Tibet, China[J]. Ore Geology Reviews, 2014, 58: 68-90.
[4] 郑有业,孙祥,田立明,等.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代[J]. 大地构造与成矿学,2014,38(1):108-118. Zheng Youye, Sun Xiang, Tian Liming, et al. Mineralization, Deposit Type and Metallogenic Age of the Gold Antimony Polymetallic Belt in the Eastern Part of North Himalayan[J]. Geotectonica et Metallogenia, 2014, 38(1): 108-118.
[5] 侯增谦,杨志明. 中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报,2009,83(12):1779-1817. Hou Zengqian, Yang Zhiming. Porphyry Deposits in Continental Settings of China: Geological Characteristics, Magmatic-Hydrothermal System, and Metallogenic Model[J]. Acta Geoligical Snica, 2009, 83(12): 1779-1817.
[6] 邵跃.热液矿床岩石测量(原生晕法)找矿[M].北京:地质出版社,1997:1-143. Shao Yue. Lithogeochemical (Primary Halos) Methods for Hydrothermal Mineral Deposit[M].Beijing: Geological Publishing House, 1997: 1-143.
[7] 李惠.大型、特大型金矿盲矿预测的原生叠加晕模型[M].北京:冶金工业出版社,1998:1-195. Li Hui. Models of Overprint of Primary Halo for Large Mega-Size Blind Gold Deposits[M]. Beijing: China Metallurgical Industry Press, 1998: 1-195.
[8] 刘崇民.金属矿床原生晕研究进展[J].地质学报,2006,80(10):1528-1538. Liu Chongmin. Progress in Studies on Primary Halos of Ore Deposit[J]. Acta Geoligical Snica, 2006, 80(10): 1528-1538.
[9] 刘崇民,徐外生.蔡家营铅锌银矿床原生异常模式[J].物探与化探,1994,18(5):378-391. Liu Chongmin, Xu Waisheng. The Primary Anomaly Pattern of the Caijiaying Lead-Zinc-Silver Deposit[J]. Geophysical & Geochemical Exploration, 1994, 18(5): 378-391.
[10] 刘崇民,马生明,胡树起,等.火山热液型铅锌矿床岩石地球化学特征及预测指标[J].物探与化探,2008,32(2):154-158. Liu Chongmin, Ma Shengming, Hu Shuqi, et al. Petrogeochemical Characteristics and Prognostic Indices of Volcanogene by Drothermal Ore Deposits[J]. Geophysical & Geochemical Exploration, 2008, 32(2): 154-158.
[11] 谈树成,高建国,晏建国,等.云南个旧矿区南部矿床原生晕垂直分带研究:以龙树脚矿段为例[J].矿物学报,2001,21(4):596-601. Tan Shucheng, Gao Jianguo, Yan Jianguo, et al. Reserach on Primary Halos Vertical Zoning in the Ore Deposit in Kafang Ore Field of the Gejiu Ore District, Yunnan Province as Exemplified by the Longshujiao Ore Block[J]. Acta Mineralogica Sinica, 2001, 21(4): 596-601
[12] 李波,韩润生,顾晓春,等.云南巧家松梁铅锌矿床I号矿体构造原生晕轴向分带序列[J].矿产与地质,2009,23(2):97-103. Li Bo, Han Runsheng, Gu Xiaochun, et al. Axial Zonality Sequence of Tectonic Primary Halos of No.I Orebody in the Songliang Lead-Zinc Deposit, Qiaojiasong of Yunnan Province[J]. Moneral Resource and Geology,2009, 23(2):97-103.
[13] 陈永清,韩学林,赵红娟,等.内蒙花敖包特Pb-Zn-Ag多金属矿床原生晕分带特征与深部矿体预测模型[J].地球科学:中国地质大学学报,2011,36(2):236-246. Chen Yongqing, Han Xuelin, Zhao Hongjuan, et al. Charateristics of Primary Halo Zonation and Prediction of Deep Orebody of the Huaaobaote Pb-Zn-Ag Polymetallic Deposit, Inner Mongolia[J]. Earth Science:Journal of China University of Geosciences, 2010, 36(2):236-246.
[14] 代力,张德会,李泳泉,等.四川夏塞银铅锌多金属矿床1号矿体原生晕地球化学特征[J].地质与勘探,2013,49(2):236-249. Dai Li, Zhang Dehui, Li Yongquan, et al. Geochemical Characteristic of Primary Halos in the No1 Orebody of the Xiasai Ag-Pb-Zn Polymetallic Deposit, Sichuan[J]. Geology and Explration, 2013, 49(2):236-249.
[15] 阮天健,朱有光.地球化学找矿[M].北京:地质出版社,1985:1-286. Ruan Tianjian, Zhu Youguang. Geochemical Prospecting[M]. Beijing: Geological Publishing House, 1985:1-286.
[16] Beus A A, Grigorian S V. Geochemical Exploration Methods for Mineral Deposits[M]. Illinois: Applied Publishing Ltd,1977:1-287.
[17] 邵跃.矿床元素原生分带的研究及其在地球化学找矿中的应用[J].地质与勘探,1984(2):47-55. Shao Yue. The Study of Zoning Sequence of Primary Halo and Its Application in Geochemical Prospecting[J]. Geology and Prospecting, 1984(2): 47-55.
[18] 李惠,张文华,刘宝林,等.中国主要类型金矿床的原生晕轴向分带序列研究及其应用准则[J].地质与勘探,1999,35(1):32-35. Li Hui, Zhang Wenhua, Liu Baolin, et al. The Study on Axial Zonality Sequence of Primary Halo and Some Criteria for the Application of This Sequence for Major Types of Gold Deposits in China[J].Geology and Explration, 1999, 35(1): 32-35.
[19] 代力.四川夏塞银铅锌矿床I号矿体原生晕地球化学及深部预测[D].北京:中国地质大学,2013:1-97. Dai Li. Geochemical Characteristic of Primary Halos and Pediction of Deep Orebody in the No1 Orebody of the Xiasai Ag-Pb-Zn Polymetallic Deposit, Sichuan[D]. Beijing: China University of Geosciences, 2013:1-97.
[20] 钱建平,黄德阳,谢彪武,等.西藏谢通门县斯弄多铅锌矿区矿床地质特征和构造地球化学找矿研究[J].大地构造与成矿学,2013,37(1):29-41. Qian Jianping, Huang Deyang, Xie Biaowu, et al.Study on Geology and Tectono-Geochemistry of the Silongduo Lead-Zinc Deposit in Xietongmen County, Tibet[J]. Geotectonica et Metallogenia, 2013, 37(1): 29-41.
[21] 朴寿成,连长云.一种确定原生晕分带序列的新方法:重心法[J].地质与勘探,1994,30(1):63-65. Piao Shoucheng, Lian Changyun.A New Kind of Method for Determinating Zoning Sequence of Primary Halo:The Method of Barycenter[J]. Geology and Prospecting, 1994, 30(1): 63-65.
[22] 王建新,臧兴运,郭秀峰,等.格里戈良分带指数法的改良[J].吉林大学学报(地球科学版),2007,37(5):884-888. Wang Jianxin, Zang Xingyun, Guo Xiufeng, et al. The Improved Gregorian's Zoning Index Calculating Method[J]. Journal of Jilin University (Earth Science Edition), 2007, 37(5): 884-888.
[23] 吴锡生.化探数据处理方法[M]. 北京:地质出版社,1993:1-132. Wu Xisheng. Geochemical Exploration Data Processing Method[M]. Beijing: Geological Publishing House, 1993:1-132.
[24] 克维亚特科夫斯基叶·米.岩石化学找矿法[M]. 张国容,邱郁文,译. 北京:地质出版社,1981:1-186. EКвятковский M. Method of Lithogeochemical Prospecting[M]. Translated by Zhang Guorong, Qiu Yuwen. Beijing: Geological Publishing House, 1981:1-186.
[1] 谈树成, 郭翔宇, 何小虎, 谢志鹏, 张亚辉, 李惠民, 郝爽. 云南个旧锡多金属矿床锡石矿物化学特征及其成因意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 736-753.
[2] 齐钒宇, 张志, 祝新友, 李永胜, 甄世民, 公凡影, 巩小栋. 湖南宝山铜铅锌多金属矿床矿物学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 754-768.
[3] 伍登浩, 高顺宝, 郑有业, 田坎, 张永超, 姜军胜, 余泽章, 黄鹏程. 西藏班公湖—怒江成矿带南侧矽卡岩型铜多金属矿床S、Pb同位素组成及成矿物质来源[J]. 吉林大学学报(地球科学版), 2018, 48(1): 70-86.
[4] 任军平, 王杰, 刘晓阳, 贺福清, 何胜飞, 左立波, 许康康, 龚鹏辉, 孙凯, 刘宇. 非洲中南部铜多金属矿床研究现状及找矿潜力分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1083-1103.
[5] 叶霖, 刘玉平, 张乾, 鲍谈, 何芳, 王小娟, 王大鹏, 蓝江波. 云南都龙超大型锡锌多金属矿床中闪锌矿微量及稀土元素地球化学特征[J]. 吉林大学学报(地球科学版), 2017, 47(3): 734-750.
[6] 石洪召, 范文玉, 王冬兵, 王显峰, 谭耕莉. 云南普朗斑岩型铜多金属矿床气液隐爆角砾岩的发现及其找矿意义[J]. 吉林大学学报(地球科学版), 2017, 47(3): 751-759.
[7] 唐忠, 李文昌, 王长兵, 明添学, 李蓉, 包从法, 王珏, 李永平. 滇东北Pb-Zn-(Ag)多金属矿床找矿突破关键基础地质问题[J]. 吉林大学学报(地球科学版), 2016, 46(3): 722-735.
[8] 庞雪娇, 宋维民, 付俊彧, 陶楠. 内蒙古孟恩陶勒盖多金属成矿远景区的成矿地质特征及找矿前景[J]. 吉林大学学报(地球科学版), 2015, 45(2): 483-494.
[9] 陈永清,周顶,郭令芬. 内蒙古花敖包特铅锌银多金属矿床成因探讨:流体包裹体及硫、铅、氢、氧同位素证据[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1478-1491.
[10] 定立,刘妍,赵元艺,王宗起,沙俊生. 江西永平铜多金属矿床岩相学、矿相学特征及其意义[J]. 吉林大学学报(地球科学版), 2014, 44(3): 796-816.
[11] 张志辉,张达,吴淦国,罗平,陈锡华,狄永军,吕良冀. 赣北梅子坑钼矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1851-1863.
[12] 唐菊兴, 郑文宝, 陈毓川, 王登红, 应立娟, 秦志鹏. 西藏甲玛铜多金属矿床深部斑岩矿体找矿突破及其意义[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1100-1110.
[13] 聂凤军, 刘勇, 刘翼飞, 江思宏, 张可, 刘妍. 中蒙边境查夫—甲乌拉地区中生代银多金属矿床成矿作用[J]. J4, 2011, 41(6): 1715-1725.
[14] 江思宏, 聂凤军, 刘翼飞, 侯万荣, 白大明, 刘妍, 梁清玲. 内蒙古孟恩陶勒盖银多金属矿床及其附近侵入岩的年代学[J]. J4, 2011, 41(6): 1755-1769.
[15] 刘晶晶, 唐川, 程尊兰, 刘宇. 气温对西藏冰湖溃决事件的影响[J]. J4, 2011, 41(4): 1121-1129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!