吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (6): 1838-1844.doi: 10.13278/j.cnki.jjuese.20170063

• 地质工程与环境工程 • 上一篇    

饱和度-压力曲线法预测柴油在毛细带中形成的透镜体厚度

罗凌云, 洪梅, 吕帆, 刘伟伟, 徐岽峰   

  1. 地下水资源与环境教育部重点实验室(吉林大学), 长春 130021
  • 收稿日期:2018-03-23 发布日期:2018-11-26
  • 通讯作者: 洪梅(1972-),女,教授,博士生导师,主要从事污染场地风险评估方面的研究,E-mail:hongmei@jlu.edu.cn E-mail:hongmei@jlu.edu.cn
  • 作者简介:罗凌云(1994-),男,硕士,主要从事污染场地控制与修复研究,E-mail:413758953@qq.com
  • 基金资助:
    国家自然科学基金项目(41530636)

Estimation of Lens Thickness of LNAPL Using Saturation-Pressure Curve

Luo Lingyun, Hong Mei, Lü Fan, Liu Weiwei, Xu Dongfeng   

  1. Key Laboratory of Groundwater Resources and Environment(Jilin University), Ministry of Education, Changchun 130021, China
  • Received:2018-03-23 Published:2018-11-26
  • Supported by:
    Supported by National Science Foundation of China(41530636)

摘要: 轻非水相液体(LNAPL)进入到地下环境中,首先在非饱和带进行垂向迁移,到达毛细带后在地下水面以上形成饱和透镜体。准确预测LNAPL渗漏在毛细带形成的透镜体厚度,对于LNAPL的去除及污染含水层的修复具有重要的指导意义。通过模拟实验测定了水-油两相吸湿及脱湿曲线,采用水-油饱和度-压力曲线拟合出了吸湿及脱湿进入压力。根据透镜体达到稳定状态时脱湿、吸湿压力水头之间的关系,建立了透镜体厚度的预测计算方法,并以中砂和粗砂为例,预测出实验条件下柴油在毛细带形成透镜体稳定时的厚度分别为4.61 cm和1.29 cm。通过室内模拟槽实验,测得柴油在中砂和粗砂中迁移时形成的透镜体厚度分别为5.30 cm和1.50 cm。预测与实验结果的相对误差分别为13.0%和14.0%。误差产生的主要原因为脱湿与吸湿曲线是在非干燥情况下测得,从而导致预测的透镜体厚度偏小。

关键词: 非轻水相液体, 透镜体, 饱和度-压力曲线

Abstract: After entering underground, light non-aqueous phase liquid (LNAPL) will firstly migrate vertically in unsaturated zone, and then form a saturated lens above the water table when reaching the capillary zone. Precisely predicting the lens thickness in the capillary fringe is of great significance for the restoration of polluted aquifer. The authors measured the initial drainage curve and initial wetting curve of the water-oil phase through laboratory experiment, and then fitted the entry pressure with the saturation-pressure curve. According to the relationship between the drainage entry and wetting entry pressures when the lens become stable, a method to predict the thickness of the lens was established. A case study of medium sand and coarse sand shows that the predicted thickness of the lenses are 4.61 and 1.29 cm,respectively;while by laboratory experiments, the measured lens thickness are 5.30, 1.50 cm, respectively. The relative errors between the predicted and measured results are 13.0%, 14.0%, respectively. We can hardly get the absolute drainage or wetting curves in laboratory, therefore the lens thickness predicted is smaller than measured in laboratory.

Key words: light non-aqueous phase liquid, lens, saturation-pressure curve

中图分类号: 

  • X53
[1] Liu Z, Wu H. Pore-Scale Modeling of Immiscible Two-Phase Flow in Complex Porous Media[J]. Applied Thermal Engineering, 2016, 93:1394-1402.
[2] Blunt M J, Bijeljic B, Dong H, et al. Pore-Scale Imaging and Modelling[J]. Advances in Water Resources, 2013, 51(1):197-216.
[3] Sleep B E, Sehayek L, Chien C C. A Modeling and Experimental Study of Light Nonaqueous Phase Liquid (LNAPL) Accumulation in Wells and LNAPL Recovery from Wells[J]. Water Resources Research, 2000, 36(12):3535-3545.
[4] Valvatne P H, Piri M, Lopez X, et al. Predictive Pore-Scale Modeling of Single and Multiphase Flow[J]. Transport in Porous Media, 2005, 58(1):23-41.
[5] Cho H, De Rooij G H. Pressure Head Distribution During Unstable Flow in Relation to the Formation and Dissipation of Fingers[J]. Hydrology and Earth System Sciences Discussions, 2002, 6(4):763-771.
[6] Simmons C T, Pierini M L, Hutson J L. Laboratory Investigation of Variable-Density Flow and Solute Transport in Unsaturated-Saturated Porous Media[J]. Transport in Porous Media, 2002, 47(2):215-244.
[7] Abdul A S. Migration of Petroleum Products Through Sandy Hydrogeologic Systems[J]. Groundwater Monitoring & Remediation, 1988, 8(4):73-73.
[8] Pantazidou M, Sitar N. Emplacement of Nonaqueous Liquids in the Vadose Zone[J]. Water Resources Research, 1993, 29(3):705-722.
[9] Schroth M H, Istok J D, Ahearn S J, et al. Geometry and Position of Light Nonaqueous-Phase Liquid Lenses in Water-Wetted Porous Media[J]. Journal of Contaminant Hydrology, 1995, 19(4):269-287.
[10] Miller C D, Durnford D S, Fowler A B. Equilibrium Nonaqueous Phase Liquid Pool Geometry in Coarse Soils with Discrete Textural Interfaces[J]. Journal of Contaminant Hydrology, 2004, 71(1):239-260.
[11] Roman S, Soulaine C, Alsaud M A, et al. Particle Velocimetry Analysis of Immiscible Two-Phase Flow in Micromodels[J]. Advances in Water Resources, 2015, 95:199-211.
[12] 李志清, 李涛, 胡瑞林, 等. 非饱和土土水特征曲线(SWCC)测试与预测[J]. 工程地质学报, 2007, 15(5):700-707. Li Zhiqing, Li Tao, Hu Ruilin, et al. The Prediction and Examination of the Unsaturated Soil-Water Characteristic Curve[J]. Journal of Engineering Geology, 2007,15(5):700-707.
[13] 孙德安, 张俊然, 吕海波. 全吸力范围南阳膨胀土的土-水特征曲线[J]. 岩土力学, 2013, 34(7):1839-1846. Sun De'an, Zhang Junran, Lü Haibo. Soil-Water Characteristic Curve of Nanyang Expansive Soil in Full Suction Range[J]. Rock and Soil Mechanics, 2013, 34(7):1839-1846.
[14] 张雪东. 土水特征曲线及其在非饱和土力学中应用的基本问题研究[D]. 北京:北京交通大学, 2010. Zhang Xuedong. The Research About the Fundamental Problem of the Soil-Water Characteristic Curve Applying on the Soil Mechanics Unsaturated Soils[D]. Beijing:Beijing Jiaotong University, 2010.
[15] Sharma R S, Mohamed M H A. An Experimental Investigation of LNAPL Migration in an Unsaturated/Saturated Sand[J]. Engineering Geology, 2003, 70(3):305-313.
[16] 戚国庆,黄润秋. 土水特征曲线的通用数学模型研究[J]. 工程地质学报, 2004, 12(2):182-186. Qi Guoqing, Huang Runqiu. A Universal Mathematical Model of Soil-Water Characteristic Curve[J]. Journal of Engineering Geology, 2004, 12(2):182-186.
[17] Van Genuchten. A Closed-Form Equation for Predic-ting the Hydraulic Conductivity of Unsaturated Soils[J]. Soil Science Society of America Journal, 1980, 44:892-898.
[18] 卢宁, 立科恩.非饱和土力学[M]. 北京:高等教育出版社,2012. Lu Ning, Likos. Unsaturated Soil Mechanics[M]. Beijing:Higher Education Press, 2012.
[1] 赵林, 莫惠婷, 郑义. 滨海盐碱地区包气带中淡水透镜体维持机理[J]. 吉林大学学报(地球科学版), 2016, 46(1): 195-201.
[2] 霍思远,靳孟贵,梁杏. 包气带弱渗透性黏土透镜体对降雨入渗补给影响的数值模拟[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1579-1587.
[3] 孙海涛,钟大康,王兴明. 沾化凹陷沙河街组浊积砂岩透镜体成岩作用特征及其意义[J]. 吉林大学学报(地球科学版), 2013, 43(3): 680-690.
[4] 甄黎,周从直,束龙仓,曹英杰,耿海涛. 海岛淡水透镜体演变规律的室内模拟实验[J]. J4, 2008, 38(1): 81-0085.
[5] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370-376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!