吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (1): 279-293.doi: 10.13278/j.cnki.jjuese.201701307
崔洪亮, 于淼, 常天英, 陈建冬, 赵恩才, 郑妍, 刘野, 周天水
Cui Hongliang, Yu Miao, Chang Tianying, Chen Jiandong, Zhao Encai, Zheng Yan, Liu Ye, Zhou Tianshui
摘要: 随着海洋经济的高速发展,加强海洋国防安全、提高海洋资源开发能力和保护海洋生态环境作为相辅相成的三个方面日益受到重视。有效的传感检测技术是保证海洋安全、高效资源开发、防止污染、维持生态平衡、实时监测等方面至关重要的技术,也成为当前海洋领域内研究的热点。基于光纤传感器相比较于传统电传感器的独特优势,本文从海防及民生安全、海底自然灾害预测、海洋能源有效勘探、海洋工程安全监控,及海洋环境在线监测等几个方面阐述适用于海洋环境的光纤传感技术原理、系统及特点,为光纤传感技术在海洋中的大力推广起到一个抛砖引玉的作用。
中图分类号:
[1] Davis C.光纤传感器技术手册[M].北京:电子工业出版社,1987. Davis C. Handbook of Optical Fiber Sensor Technology[M].Beijing:Electronic Industries Press,1987. [2] 廖延彪,金慧明.光纤光学[M].北京:清华大学出版社,1992. Liao Yanbiao,Jin Huiming. Fiber Optics[M]. Beijing:Tsinghua University Press,1992. [3] Li H N, Li D S, Song G B. Recent Applications of Fiber Optic Sensors to Health Monitoring in Civil Engineering[J]. Engineering Structures, 2004, 26(11):1647-1657. [4] Sanders G A, Szafraniec B, Liu R Y, et al. Fiber Optic Gyros for Space, Marine, and Aviation Applications[C]//SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation.[S. l.]:International Society for Optics and Photonics, 1996:61-71. [5] Arshad M R. Recent Advancement in Sensor Technology for Underwater Applications[J]. Indian J Mar Sci, 2009, 38(3):267-273. [6] 洪新华,郎士宁,郑黎.光纤水听器特性及研究现状[J].常熟理工学院学报, 2006, 20(6):36-40. Hong Xinhua,Lang Shining, Zheng Li. Characteristics of Fiber Hydrophyones and Research Situation[J]. Journal of Changshu Institute of Technology, 2006, 20(6):36-40. [7] Takahashi N, Yoshimura K, Takahashi S, et al. Deve-lopment of an Optical Fiber Hydrophone with Fiber Bragg Grating[J]. Ultrasonics, 2000, 38(1):581-585. [8] 张淑芳.光纤光栅传感器解调技术研究[D].开封:河南大学,2013. Zhang Shufang. Research on Demodulation Technology of Fiber Grating Sensor[D].Kaifeng:Henan University,2013. [9] 张仁和,倪明.光纤水听器的原理与应用[J].物理, 2004, 33(7):503-507. Zhang Renhe,Ni Ming. Principle and Applications of the Fiber Optic Hydrophone[J]. Physics, 2004, 33(7):503-507. [10] 罗小东.光纤光栅振动传感关键技术研究[D].西安:西北大学,2008. Luo Xiaodong. Research on Key Technology of Fiber Bragg Grating Vibration Sensor[D].Xi'an:Northwestern University,2008. [11] Ni X, Zhao Y, Yang J. Research of a Novel Fiber Bragg Grating Underwater Acoustic Sensor[J]. Sensors and Actuators:A:Physical, 2007, 138(1):76-80. [12] Li H, Ma L, Yang H, et al. Study on the DFB Fiber Laser Accelerometer with a Metal-Shell-Packaged Single-Cylinder Mandrel Structure[C]//International Symposium on Optoelectronic Technology and Application 2014.[S. l.]:International Society for Optics and Photonics, 2014:929734-929735. [13] 于梅.低频超低频振动计量技术的研究与展望[J].振动与冲击, 2007, 26(11):83-86. Yu Mei. Research and Prospect of Low Frequency Ultra Low Frequency Vibration Measurement Technology[J]. Vibration and Shock, 2007, 26(11):83-86. [14] Felemban E,Shaikh F K,Qureshi U M,et al.Under-water Sensor Network Applications:A Comprehensive Survey[J]. International Journal of Distributed Sensor Networks, 2015, 55(11):5-19. [15] Felli F, Paolozzi A, Vendittozzi C, et al. Smart Disaster Mitigation in Italy:A Brief Overview on the State of the Art[C]//ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems.Newport, Rhode Island.[S. l.]:American Society of Mechanical Engineers, 2014:V002T04A018. [16] Choi J K, Yokobiki T, Nishida S, et al. Toward Automation of Thin Optical-Fiber Submarine Cable Installation[C]//Oceans 2014-Taipei. Taipei:IEEE, 2014:1-4. [17] Zheng X Y, Li H, Rong W, et al. Joint Earthquake and Wave Action on the Monopile Wind Turbine Foundation:An Experimental Study[J]. Marine Structures, 2015, 44:125-141. [18] Meng Q, Dong X, Ni K, et al. Optical Fiber Laser Salinity Sensor Based on Multimode Interference Effect[J]. IEEE Sensors Journal, 2014, 14(6):1813-1816. [19] Sheng Q, Zhu X, Shi W, et al. All-Fiber Passively Q-Switched Fiber Laser Based on the Multimode Interference Effect[C]//CLEO:Science and Innovations.San Jose:Optical Society of America, 2015:STh4L. 2. [20] Wu J, Miao Y, Song B, et al. Temperature-Insensitive Optical Fiber Refractometer Based on Multimode Interference in Two Cascaded No-Core Square Fibers[J]. Applied Optics, 2014, 53(22):5037-5041. [21] Stefanovic M, Draca D L, Panajotovic A. The Common Influence of Time Shift and Appearing Place of Interference on Signal Propagation along Optical Fiber[J]. Elektronika ir Elektrotechnika, 2015, 57(1):14-19. [22] Feng D J, Liu G X, Liu X L, et al. Refractive Index Sensor Based on Plastic Optical Fiber with Tapered Structure[J]. Applied Optics, 2014, 53(10):2007-2011. [23] Montero D S, Garcilpez I P, Vázquezgarcía C, et al. Recent Advances in Wavelength-Division-Multiplexing Plastic Optical Fiber Technologies[M/OL]//[2015-02-25]. Advances in Optical Fiber Technology:Fundamental Optical Phenomena and Applications. http://www.intechopen.com/books/advances-in-optical-fiber-technology-fundamental-optical-phenomena-and-applications.Issued. [24] Dandridge A, Tveten A B, Giallorenzi T G. Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(10):1635-1641. [25] 江怀友.世界天然气资源现状与展望[J].中国能源,2009, 31(3):40-42. Jiang Huaiyou. Current Situation and Prospect of Natural Gas Resources in the World[J]. China's Energy, 2009, 31(3):40-42. [26] 范玉扬,车继勇,杨洪庆.海上平台火/气探测报警设备类型与性能分析[J].中国修船, 2008, 21(增刊1):69-72. Fan Yuyang,Che Jiyong,Yang Hongqing. Type and Performance Analysis of Fire/Gas Detection Alarm Device for Offshore Platform[J]. China Shiprepair, 2008, 21(Sup. 1):69-72. [27] Ferreira H, Martins A, Almeida J M, et al. TURTLE:Systems and Technologies for Deep Ocean Long Term Presence[C]//Oceans 2014-St John's.St John's:IEEE, 2014:1-10. [28] 李冬梅.几种常见气体传感器的研究进展[J].传感器世界, 2006, 12(1):6-11. Li Dongmei. Research Progress of Several Common Gas Sensors[J]. Sensor World, 2006, 12(1):6-11. [29] 潘小青,刘庆成.气体传感器及其发展[J].东华理工学院学报, 2004, 27(1):89-93. Pan Xiaoqing,Liu Qingcheng. Gas Sensor and Its Development[J]. Journal of East China Institute of Technology, 2004, 27(1):89-93. [30] Stone W C, Hogan B P. Fiber Optic Rotary Joint for Use in an Optical Energy Transfer and Conversion System:US. 14/723,161[P]. 2015-05-27. [31] 张可可,齐勇,付晓.基于TDLAS一次谐波的甲烷浓度检测系统及其温度补偿研究[J].海洋科技与装备专栏,2014,27(1):16-21. Zhang Keke,Qi Yong,Fu Xiao. Methane Concentration Detection System Based on TDLAS and Its Temperature Compensation[J].Marine Science and Technology and Equipment,2014,27(1):16-21. [32] Milsom B, Olivero M, Milanese D, et al. Glass Optical Fibre Sensors for Detection of Through Thickness Moisture Diffusion in Glass Reinforced Composites under Hostile Environments[J]. Advances in Applied Ceramics, 2015, 114(Sup. 1):S76-S83. [33] Stone W C, Hogan B P. Optical Energy Transfer and Conversion System:US. 14/810,121[P]. 2015-07-27. [34] Li M,Wang H,Tao G.Current and Future App-lications of Distributed Acoustic Sensing as a New Reservoir Geophysics Tool[J]. Open Petroleum Engineering Journal, 2015, 8(1):272-281. [35] 郭斌,王军,毛荣,等. 在役海底管道内检测方法分析及应用[J].中国造船, 2013, 54(1):346-351. Guo Bin, Wang Jun, Mao Rong, et al. Analysis and Application for the Detection Methods in Submarine Pipeline in Service[J]. Shipbuilding of China, 2013, 54(1):346-351. [36] Talarico L, S rensen K, Reniers G, et al. Pipeline Security[M/OL]//[2015-04-28]. Securing Transportation Systems. http://transportationops.org/ondemand-learning/securing-transportation-systems-webcast,Issued. [37] 张恩勇.海底管道分布式光纤传感技术的基础研究[D].杭州:浙江大学,2004. Zhang Enyong. Basic Research on Distributed Optical Fiber Sensing Technology for Submarine Pipeline[D]. Hangzhou:Zhejiang University, 2004. [38] 唐恂,张琳,苏欣,等.长输管道泄漏检测技术发展现状[J].油气储运, 2007, 26(7):11-14. Tang Xun,Zhang Lin,Su Xin,et al. Development Status of Leak Detection Technology for Long Distance Pipeline[J]. Oil & Gas Storage and Transportation, 2007, 26(7):11-14. [39] 许海燕.分布式光纤振动传感器及其定位技术研究[D].上海:复旦大学,2011. Xu Haiyan. Research on Distributed Optical Fiber Vibration Sensor and Its Positioning Technology[D]. Shanghai:Fudan University,2011. [40] Wang Z, Zeng J, Li J, et al. Ultra-Long Phase-Sensitive OTDR with Hybrid Distributed Amplification[J]. Optics Letters, 2014, 39(20):5866-5869. [41] 周俊,潘政清,梁可桢,等.光频分复用相位敏感光时域反射计:中国,CN102645268A[P]. 2012-08-22. Zhou Jun,Pan Zhengqing,Liang Kezhen,et al.Optical Frequency Division Multiplexing Phase Sensitive Optical Time Domain Reflector:China, CN102645268A[P].2012-08-22. [42] Connelly M J. Digital Synthetic-Heterodyne Interfero-metric Demodulation[J]. Journal of Optics A:Pure and Applied Optics, 2002, 4(6):400. [43] Martins H F, Martin-Lopez S, Corredera P, et al. Phase-Sensitive Optical Time Domain Reflectometer Assisted by First-Order Raman Amplification for Distributed Vibration Sensing over>100 km[J]. Journal of Lightwave Technology, 2014, 32(8):1510-1518. [44] Brooks J, Moslehi B, Kim B, et al. Time-Domain Addressing of Remote Fiber-Optic Interferometric Sensor Arrays[J].Journal of Lightwave Technology, 1987, 5(7):1014-1023. [45] 任广.干涉型分布式光纤周界及其定位技术研究[D].武汉:武汉邮电科学研究院,2014. Ren Guang. Interferometric Optical Fiber Perimeter and Positioning Technology Research[D]. Wuhan:Wuhan Institute of Posts and Telecommunications, 2014. [46] 张晓峻,康崇,孙晶华. 3×3光纤耦合器解调方法[J].发光学报, 2013, 34(5):665-671. Zhang Xiaojun,Kang Chong,Sun Jinghua.Demodulation Method of 3×3 Optical Fiber Coupler[J]. Chinese Journal of luminescence, 2013, 34(5):665-671. [47] Wang H, Sun Q, Li X, et al. Improved Location Algorithm for Multiple Intrusions in Distributed Sagnac Fiber Sensing System[J]. Optics Express, 2014, 22(7):7587-7597. [48] Peters K J, Inaudi D. Fiber Optic Sensors for Assessing and Monitoring Civil Infrastructures[M]//Wang M L, Lynch J P, Sohn H. Sensor Technologies for Civil Infrastructures:Sensing Hardware and Data Collection Methods for Performance Assessment. Sawston:Elsevier, 2014:1121-1158. [49] 杨黎鹏. 基于光纤布里渊散射的分布式传感海底电缆在线监测技术研究[J].船海工程, 2009, 2(3):133-136. Yang Lipeng. On Line Monitoring Technology of Distributed Sensing Submarine Cable Based on Optical Fiber Brillouin Scattering[J]. Ship Sea Engineering, 2009,2(3):133-136. [50] Agrawal G. Applications of Nonlinear Fiber Optics[M]. San Diego:Academic Press, 2010. [51] Giordano M, Nasser J S, Zarrelli M,et al. Fiber Optic Sensors in Structural Health Monitoring[J]. Journal of Lightwave Technology, 2011, 29(4):587-608. [52] Cho Y, Alahbabi M, Gunning M, et al. 50 km Single-Ended Spontaneous-Brillouin-Based Distributed-Temperature Sensor Exploiting Pulsed Raman Amplification[J]. Optics Letters, 2003, 28(18):1651-1653. [53] 万生鹏,何赛灵.基于布里渊散射的光纤传感系统性能分析[J].传感技术学报, 2004, 17(2):322-324. Wan Shengpeng,He Sailing. Performance Analysis of Optical Fiber Sensing System Based on Brillouin Scattering[J]. Journal of Sensing Technology, 2004, 17(2):322-324. [54] Kurashima T, Horiguchi T, Ohno H, et al. Strain and Temperature Characteristics of Brillouin Spectra in Optical Fibers for Distributed Sensing Techniques[C]//24th European Conference onOptical Communication.Naleczow:IEEE, 1998, 1:149-150. [55] 任艳. 超长距离布里渊分布式光纤传感关键技术的研究[D]. 杭州:浙江大学,2014. Ren Yan. Research on Key Technologies of Ultra Long Distance Brillouin Distributed Optical Fiber Sensor[D].Hangzhou:Zhejiang University, 2014. [56] 金重九.布里渊高精度分布式光纤传感系统优化与实现[D].上海:上海交通大学,2013. Jin Chongjiu. Optimization and Implementation of a Distributed Optical Fiber Sensing System with High Precision and High Precision[D]. Shanghai:Shanghai Jiaotong University, 2013. [57] Chang T, Li D Y, Koscica T E, et al. Fiber Optic Distributed Temperature and Strain Sensing System Based on Brillouin Light Scattering[J]. Applied Optics, 2008, 47(33):6202-6206. [58] Chang T, Koscica T E, Li D Y, et al. A Novel Detection Method of Brillouin Backscattered Light in Optical Fiber[J]. IEEE Sensors Journal, 2009, 9(4):430-434. [59] 常天英. 基于布里渊散射的分布式光纤传感系统研究[D].济南:山东大学,2009. Chang Tianying. Research on Distributed Optical Fiber Sensing System Based on Brillouin Scattering[D]. Jinan:Shandong University, 2009. [60] Verma R, Gupta B D. Detection of Heavy Metal Ions in Contaminated Water by Surface Plasmon Resonance Based Optical Fibre Sensor Using Conducting Polymer and Chitosan[J]. Food Chemistry, 2015, 166:568-751. [61] Jiang X, Meng Q. Design of Optical Fiber SPR Sensing System for Water Quality Monitoring[C]//International Conference on Computational Science and Engineering.[S. l.]:ICCSE, 2015:123-127. [62] Othman H, Qian S E. Noise Reduction of Hyperspectral Imagery Using Hybrid Spatial-Spectral Derivative-Domain Wavelet Shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(2):397-408. [63] 邹东雷,李婷婷,高梦薇,等.基于响应面的可见光催化材料制备与优化[J].吉林大学学报(地球科学版),2015,45(6):1833-1838. Zou Donglei, Li Tingting, Gao Mengwei, et al. Preparation and Optimization of the Photocatalytic Materials Under Visible Light with Response Surface Methodology[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(6):1833-1838. |
No related articles found! |
|