吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (1): 203-212.doi: 10.13278/j.cnki.jjuese.20170151

• 地质工程与环境工程 • 上一篇    下一篇

滑坡堰塞坝越顶溢流破坏的物理模型实验

付建康1, 罗刚1, 胡卸文1,2   

  1. 1. 西南交通大学地球科学与环境工程学院, 成都 610031;
    2. 西南交通大学抗震工程技术四川省重点实验室, 成都 610031
  • 收稿日期:2017-06-01 出版日期:2018-01-26 发布日期:2018-01-26
  • 通讯作者: 罗刚(1984),男,讲师,博士,主要从事工程地质、环境地质方面的研究工作,E-mail:luogang@home.swjtu.edu.cn E-mail:luogang@home.swjtu.edu.cn
  • 作者简介:付建康(1993),男,硕士研究生,主要从事工程地质研究工作,E-mail:15850691686@163.com
  • 基金资助:
    国家自然科学基金项目(No41402266);中央高校基本科研业务费创新项目(2682015CX011)

Physical Model Experiment on Overtopping Overflow Failure of Landslide Dam

Fu Jiankang1, Luo Gang1, Hu Xiewen1,2   

  1. 1. School of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China;
    2. Aseismic Engineering Technology Key Laboratory of Sichuan Province, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2017-06-01 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41402266) and Fundamental Research Funds for the Central Universities (2682015CX011)

摘要: 滑坡堰塞坝作为结构松散的堆积物,随着上游水位的不断上涨,其稳定性不断降低,并存在突然溃坝的风险。以唐家山滑坡堰塞坝为研究对象,基于相似原理,开展符合坝体颗粒级配的室内水槽物理模型实验,模拟了不同坝后蓄水量、不同水位和不同颗粒物质组成条件下坝体渗流、漫顶破坏的整个过程。监测结果显示:堰塞坝漫顶溃坝主要分为渗流、漫顶、冲刷和溃决4个过程;坝体堆积颗粒级配越差,坝体允许渗流坡降越小;相同材料配比的坝体,上游水位相同时,坝体底部水平位移最大,且漫顶溃坝时溃口尺寸与蓄水量正相关。该研究结果揭示了堰塞坝漫顶破坏规律,可为堰塞坝溃坝防治提供理论参考。

关键词: 滑坡堰塞坝, 渗流, 漫顶溢流, 失稳机理

Abstract: As a kind of loose structured deposits, the stability of landslide dams reduces with the upstream water level rising. Under the worst situation, a sudden dam-breaking would happen. Taking the Tangjianshan barrier dam as the research object, based on the similarity principle, the indoor flume model experiments were conducted to simulate the whole failure process in different conditions, including different impoundment, upstream water level,and particles composition. The monitoring results indicate that:The failure process can be mainly divided into seepage, overtopping, scour, and breach; The smaller the proportion of the composition particles accounts for, the lower the allowed seepage gradient of the dam is; Under the same grading of composed material and the same upstream water level, the sectional breach size is positively correlated with the impounding water. The experimental results reveal the overtopping failure law of landslide dams,and provide some theoretical reference for a breach prevention.

Key words: landslide dam, seepage, overtopping, failure mechanism

中图分类号: 

  • P642.22
[1] Costa J E, Schuster R L. The Formation and Failure of Natural Dams[J]. Geological Society of America Bulletin, 1988, 100(7): 1054-1068.
[2] Zhao W, Chen X, You Y, et al. Dam-Break Chara-cteristics of Landslide Dams with Different Types of Open Channel Discharge Sections[J]. Environmental Earth Sciences, 2015, 74(6):1-10.
[3] Peng C, Zhu Y Y, Han Y S, et al. The 12 May Wenchuan Earthquake-Induced Landslide Lakes: Distribution and Preliminary Risk Evaluation[J]. Landslides, 2009, 6(3):209-223.
[4] Morris M W. IMPACT, Investigation of Extreme Flood Processes and Uncertainty, Final Technical Report[EB/OL].[2016-12-04]. http://www.samui.co.UK//impact-project/general-publications.htm.
[5] Fema. The National Dam Safety Program Research Needs Workshop: Embankment Dam Failure Analysis[EB/OL].[2016-12-04]. http://www.fema.gov./library/viewRecord.do?id=1454.
[6] Morris M W, Hassan M, Kortenhaus A, et al. Modelling Breach Initiation and Growth[C]//Flood Risk Management: Research and Practice Proceeding of Floodrisk. Oxford:Keble College, 2008.
[7] 铁道部科学研究院溃坝专题组. 京广线(郑州v局管内)水害调查报告[R]. 北京:铁道部科学研究院铁道建筑研究所, 1975. Dam Project Group of Railway Ministry Scientific Research Institute. Water Hazard Investigation Report on Jing-Guang Railway[R].Beijing:Railway Construction Institution of Railway Ministry Scientific Research Institute, 1975.
[8] 铁道部科学研究院. 郑州铁路局第二设计院京广线某水库下游抗洪措施试验研究报告[R]. 北京:铁道部科学研究院铁建所, 1978. Railway Ministry Scientific Research Institute. Test Report on Flood Control Measures in the Dam Downstream of Jingguang Railway from Zhengzhou Railway Bureau Second Design Institute[R].Beijing: Railway Construction Institution of Railway Ministry Scientific Research Institute, 1978.
[9] 张建云,李云,宣国祥,等. 不同黏性均质土坝漫顶溃决实体试验研究[J]. 中国科学:E辑:技术科学, 2009, 39(11): 1881-1886. Zhang Jianyun,Li Yun, Xuan Guoxiang, et al. Experiment Study on Overtopping Breaching of Different Cohesive Homogeneous Embankment Dams[J]. China Science:Series E: Technology Science, 2009, 39(11): 1881-1886.
[10] 郭小花, 卢玉东, 李小林,等. 黄河上游德恒隆-锁子滑坡堵塞黄河事件[J]. 吉林大学学报(地球科学报), 2015, 45(6):1789-1797. Guo Xiaohua, Lu Yudong, Li Xiaolin,et al. Event of Block up of Upper Yellow River by Dehenglong-Suozi Landslides[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1789-1797.
[11] 郑光,许强,林峰,等. 2012年6·29贵州岑巩龙家坡滑坡灾害的基本特征与成因机理:一个由侧向剪切扰动诱发大型滑坡的典型案例[J]. 吉林大学学报(地球科学报), 2014, 44(3):932-945. Zheng Guang,Xu Qiang,Lin Feng, et al. Characteristics and Failure Mechanism of the Longjiapo Landslide in Cengong,Guizhou on June 29,2012:A Case of Catastrophic Landslides Triggered by Lateral Shear Disturbance[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3): 932-945.
[12] Cui P, Dang C, Zhuang J Q, et al. Landslide-Dammed Lake at Tangjiashan, Sichuan Province, China (Triggered by the Wenchuan Earthquake, May 12, 2008): Risk Assessment, Mitigation Strategy, and Lessons Learned[J]. Environmental Earth Sciences, 2012, 65(4):1055-1065.
[13] Liu N, Zhang J X, Lin W, et al. Draining Tang-jiashan Barrier Lake After Wenchuan Earthquake and the Flood Propagation After the Dam Break[J]. Science in China Series: Series E: Technological Sciences, 2009, 52(4): 801-809.
[14] 王光谦,钟德钰,张红武,等. 汶川地震唐家山堰塞湖泄流过程的数值模拟[J]. 科学通报, 2008, 53(24): 3127-3133. Wang Guangqian, Zhong Deyu, Zhang Hongwu, et al. Wenchuan Earthquake the Tangjiashan Quake Lake Discharge Process of Numerical Simulation on Tangjiashan Barrier Lake Discharge Process in Wenchuan Earthquake[J]. Chinese Science Bulletin, 2008, 53(24): 3127-3133.
[15] Cao Z, Yue Z, G. Pender. Landslide Dam Failure and Flood Hydraulics: Part I: Experimental Investigation[J]. Natural Hazards, 2011, 59(2): 1003-1019.
[16] Qiang X, Fan X M, Huang R Q, et al. Landslide Dams Triggered by the Wenchuan Earthquake, Sichuan Province, South West China[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(3):373-386.
[17] 胡卸文,罗刚,王军桥,等. 唐家山堰塞体渗流稳定及溃决模式分析[J]. 岩石力学与工程学报, 2010, 29(7): 1409-1417. Hu Xiewen, Luo Gang, Wang Junqiao, et al. Seepage Stability Analysis and Dam-Breaking Mode of Tangjiashan Barrier Dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(7): 1409-1417.
[18] 杨华,陈云良,何利君,等. 三种堰塞坝溃口发展及最大溃决流量公式拟合[J]. 中国农村水利水电, 2015(5): 129-132. Yang Hua, Chen Yunliang, He Lijun, et al. Breach Development and Peak Break Discharge Formula for Three Types of Barrierdams[J]. China Rural Water and Hydropower, 2015(5): 129-132.
[19] 张大伟,黄金池,何晓燕. 无黏性均质土石坝漫顶溃决试验研究[J]. 水科学进展, 2011, 22(2): 222-228. Zhang Dawei, Huang Jinchi, He Xiaoyan. Experimental Study on Overtopping Breaching of Noncohesive Homogeneous Embankment Dams[J]. Advances in Water Science, 2011, 22(2): 222-228.
[20] 段文刚,杨文俊,王思莹,等. 无黏性土坝漫顶溃决过程及机理研究[J]. 长江科学院院报, 2012, 29(10): 68-72. Duan Wengang,Yang Wenjun, Wang Siying, et al. Overtopping Failure Process of Cohesionless Earth Dam[J], Journal of Yangtze River Scientific Research Institute, 2012, 29(10): 68-72.
[21] 国小龙. 均质土石坝漫溃过程中二维"陡坎"冲刷数学模型研究[D]. 武汉:长江科学院, 2013. Guo Xiaolong, Two Dimensional Headcut Erosion Mathmatical Model for Breaching of Homogeneous Embankment due to Overflowing[D]. Wuhan: Changjiang River Scientific Research Institute, 2013.
[22] 郑欣,亢勇,许开力,等. 尾矿坝管涌的试验研究[J]. 工业安全与环保, 2013, 39(6): 37-39. Zheng Xin, Kang Yong, Xu Kaili, et al, Experimental Study on Tailings Dam Piping[J]. Industrial Safety and Environmental Protection, 2013, 39(6): 37-39.
[23] Dong J J, Yuhsiang T, Chen C C, et al. Discriminant Analysis of the Geomorphic Characteristics and Stability of Landslide Dams[J]. Geomorphology, 2009, 110(3/4): 162-171.
[24] Stefanelli C T, Segoni S, Casagli N, et al. Geomor-phic Indexing of Landslide Dams Evolution[J]. Engineering Geology, 2016, 208: 1-10.
[1] 林承焰, 王杨, 杨山, 任丽华, 由春梅, 吴松涛, 吴玉其, 张依旻. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317.
[2] 付延玲, 骆祖江, 廖翔, 张建忙. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1781-1789.
[3] 刘仁强, 段永刚, 谭锋奇, 刘红现, 屈怀林. 用试井资料研究低渗透裂缝性油藏渗流模式及演化特征——以准噶尔盆地火烧山油田为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 610-616.
[4] 黄修东,束龙仓,崔峻岭,童坤,周庆鹏. 人工回灌物理堵塞特征试验及渗滤经验公式推导[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1966-1972.
[5] 付延玲,金玮泽,陈兴贤,谈金忠. 高层建筑荷载引发地面沉降与隆起变形三维数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1587-1594.
[6] 姜雪,梁秀娟,肖长来,闫佰忠. 尾矿库筑坝期三维渗流分析[J]. 吉林大学学报(地球科学版), 2014, 44(2): 619-625.
[7] 吴志伟,宋汉周. 由温度时序资料反演地下水流速的两种解析解及其比较[J]. 吉林大学学报(地球科学版), 2014, 44(2): 610-618.
[8] 陈兴贤,骆祖江,安晓宇,谈金忠,田开洋. 深基坑降水三维变参数非稳定渗流与地面沉降耦合模型[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1572-1578.
[9] 刘昌军,赵华,张顺福,丁留谦. 台兰河地下水库辐射井抽水过程的非稳定渗流场的有限元分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 922-930.
[10] 付延玲. 基于地面沉降控制的区域性松散沉积层地下水可采资源规划评价[J]. J4, 2012, 42(2): 476-484.
[11] 牛岑岑, 王清, 苑晓青, 杨静, 宋晶, 王吉亮. 渗流作用下吹填土微观结构特征定量化研究[J]. J4, 2011, 41(4): 1104-1109.
[12] 宋广寿,高 辉,高静乐,孙 卫,任国富,齐 银,路 勇,田育红. 西峰油田长8储层微观孔隙结构非均质性与渗流机理实验[J]. J4, 2009, 39(1): 53-0059.
[13] 陶月赞,姚 梅. 地下水渗流力学的发展进程与动向[J]. J4, 2007, 37(2): 221-230.
[14] 张立杰,杜新强,廖资生,王洪波. 磨盘山水库坝基渗透稳定研究[J]. J4, 2007, 37(2): 411-416.
[15] 张 延 军. 边坡渗流耦合变形分析方法的研究及其应用[J]. J4, 2006, 36(01): 103-0107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!