吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (2): 433-444.doi: 10.13278/j.cnki.jjuese.20170243
曾昭发1,2, 霍祉君1,2, 李文奔3, 李静1,2, 赵雪宇1,2, 何荣钦1,2
Zeng Zhaofa1,2, Huo Zhijun1,2, Li Wenben3, Li Jing1,2, Zhao Xueyu1,2, He Rongqin1,2
摘要: 在航空电磁探测方法应用中,地下探测环境复杂,地下介质物性参数存在各向异性特征。如果采用常规各向同性介质模型,在资料解释过程中会产生严重的偏差。本文基于矢量有限元法开展三维任意各向异性频率域航空电磁响应模拟计算研究。首先,将总场分解成一次场和二次场,对空气介质的均匀全空间进行一次场解析计算,同时利用矢量有限元法对二次电场的双旋度方程进行求解。为提高求解速度,采用共享内存直接求解器PARDISO对大规模稀疏矩阵并行计算,大大提高了三维模型的计算速度。之后开展了4种典型目标模型的三维各向异性介质模拟:围岩各向同性-目标体各向异性(绕z轴旋转)模型;围岩各向同性-目标体各向异性(绕x轴旋转)模型;围岩各向异性-目标体各向异性(绕z轴旋转)模型;围岩各向异性-目标体各向异性(绕x轴旋转)模型。对比分析了不同模型在不同旋转角度情况下,磁场实虚分量的变化特征,进而总结了各向异性参数对航空电磁响应的影响规律和识别方法。
中图分类号:
[1] 雷栋,胡祥云,张素芳. 航空电磁法的发展现状[J]. 地质找矿论丛,2006,21(1):40-44,53. Lei Dong, Hu Xiangyun, Zhang Sufang. Development of Airborne Electromagnetic Method[J].Contributions to Geology and Mineral Resources Research, 2006, 21(1):40-44,53. [2] 王卫平. 频率域航空电磁法发展研究现状与应用研究[C]//中国地球物理学会.中国地球物理学会第二十七届年会论文集.北京:中国地球物理学会,2011:2. Wang Weiping. Application and Prospect of the Research About Frequeney Domain Airborne Electromagneite Method[C]//Chinese Geophysical Society. Proceedings of the Twenty-Seventh Annual Meeting of China Geophysical Society. Beijing:China Geophysical Society, 2011:2. [3] Newman G A, Alumbaugh D L.Frequency Domain Modeling of Airborne Electromagnetic Responses Using Staggered Finite Differences[J]. Geophysical Prospecting, 1995, 43:1021-1042. [4] 朱凯光,林君,刘长胜,等. 频率域航空电磁法一维正演与探测深度[J]. 地球物理学进展,2008,23(6):1943-1946. Zhu Kaiguang, Lin Jun, Liu Changsheng, et al. One-dimensional Forwand and Prospecting Depth for Airborne Frequency Domain Electromagnetic Method[J]. Progress in Geophysics, 2008, 23(6):1943-1946. [5] 高亮,胡祥云,王卫平,等. 磁性条件下频率域航空电磁法正演研究[J]. 工程地球物理学报,2009,6(4):399-403. Gao Liang, Hu Xiangyun, Wang Weiping, et al. A Study of Frequency Airborne Electromagnetic Forward Under Magnetic Condition[J]. Chinese Journal of Engineering Geophysics, 2009, 6(4):399-403. [6] 李小康. 基于MPI的频率域航空电磁法有限元二维正演并行计算研究[D]. 北京:中国地质大学,2011. Li Xiaokang. A MPI Based Parallel Calculation Investigation on Two Dimensional Finite Element Modelling of AEM[D]. Beijing:China University of Geosciences, 2011. [7] 曲昕馨. 三维频率域航空电磁法的数值模拟及姿态影响和校正研究[D]. 长春:吉林大学,2014. Qu Xinxin. Numerical Simulation Attitude Effect and Correction of 3-D Frequency Domain Helicopterborne Electromagnetic Method[D]. Changchun:Jilin University, 2014. [8] 王卫平,曾昭发,李静,等. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版),2015,45(3):941-951. Wang Weiping, Zeng Zhaofa, Li Jing, et al. Topographic Effects and Correction for Frequency Airborne Electromagnetic Method[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3):941-951. [9] 殷长春,张博,刘云鹤,等. 2.5维起伏地表条件下时间域航空电磁正演模拟[J]. 地球物理学报,2015,58(4):1411-1424. Yin Changchun, Zhang Bo, Liu Yunhe, et al. 2.5-D Forward Modeling of the Time-Domain Airborne EM Aystem in Areas with Topographic Relief[J]. Chinese Journal of Geophysics, 2015, 58(4):1411-1424. [10] 黄威,殷长春,贲放,等. 频率域航空电磁三维矢量有限元正演模拟[J]. 地球科学,2016,41(2):331-342. Huang Wei, Yin Changchun, Ben Fang, et al. 3D Forward Modelling for Frequency AEM by Vector Finite-Element[J].Earth Science, 2016, 41(2):341-342. [11] Li Wenben, Zeng Zhaofa, Li Jing,et al. 2.5D Fo-rward Modeling and In-Version of Frequency-Domain Airborne Electromagnetic Data[J]. Applied Geophysics, 2016, 13(1):37-47,218. [12] Yin C, Weidelt P. Geoelectrical Fields in a Layered Earth with Arbitrary Anisotropy[J]. Geophysics, 1999, 64(2):426-434. [13] Yin C, Maurer, H.M. Electromagnetic Induction in a Layered Earth with Arbitrary Anisotropy[J]. Geophysics, 2001, 66(5):1405-1416. [14] Avdeev D B, Kuvshinov A V, Pankratov O V, et al. Three-Dimensional Frequency-Domain Modeling of Airborne Electromagnetic Responses[J]. Exploration Geophysics, 1998, 29(2):111-119. [15] Yin C, Fraser D C. The Effect of the Electrical Ani-sotropy on the Response of Helicopter-Borne Frequency-Domain Electromagnetic Systems[J]. Geophysical Prospecting, 2004, 52(5):399-416. [16] Yin C, Hodges G. Simulated Annealing for Airborne EM Inversion[J]. Geophysics, 2007, 72(4):F189-F196. [17] Liu Y, Yin C.3D Anisotropic Modeling for Airborne EM Systems Using Finite-Difference Method[J]. Journal of Applied Geophysics, 2014, 109:186-194. [18] Yin C, Yan F, Liu Y. 3D Time-Domain Airborne EM Modeling for an Arbitrarily Anisotropic Earth[J]. Journal of Applied Geophysics, 2016, 131:163-178. [19] Huang X, Yin C,Cao X Y, et al. 3D Anisotropic Modeling and Identification for Airborne EM Systems Based on the Spectral-Element Method[J]. Applied Geophysics, 2017, 14(3):419-430. [20] Yin C. Geoelectrical Inversion for a One-Dimensional Anisotropic Model and Inherent Non-Uniqueness[J]. Geophys J Int, 2000, 140(1):11-23. [21] Onsager L. Reciprocal Relations in Irreversible Pro-cesses[J]. Physical Review, 1931, 37(37):405-426. [22] Mitsuhata Y. 2-D Electromagnetic Modeling by Finite Element Method with a DipoleSource and Top——Ography[J]. Geophysics, 2000, 65(2):465-475. [23] 金建铭. 电磁场有限元方法[M]. 西安:西安电子科技大学出版社,1998. Jin Jianming. Electromagnetic Finite Element Method[M]. Xi'an:Xidian University Press, 1998. |
[1] | 贲放, 刘云鹤, 黄威, 徐驰. 各向异性介质中的浅海海洋可控源电磁响应特征[J]. 吉林大学学报(地球科学版), 2016, 46(2): 581-593. |
[2] | 王卫平, 曾昭发, 李静, 吴成平. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 941-951. |
[3] | 顾观文,吴文鹂,李桐林. 大地电磁场三维地形影响的矢量有限元数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1678-1686. |
|