吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (6): 1669-1682.doi: 10.13278/j.cnki.jjuese.20170289

• 地质与资源 • 上一篇    

小秦岭镰子沟金矿床地质特征、黄铁矿原位硫同位素组成及成因意义

代军治1,2, 高菊生1, 钱壮志2, 张龙斌3, 周金隆3, 李平3, 高毅3   

  1. 1. 西北有色地质矿业集团有限公司, 西安 710054;
    2. 长安大学地球科学与资源学院, 西安 710054;
    3. 咸阳西北有色七一二总队有限公司, 陕西 咸阳 712000
  • 收稿日期:2018-03-20 发布日期:2018-11-26
  • 作者简介:代军治(1978-),男,高级工程师,在站博士后,主要从事金属矿产资源勘查研究和技术管理,E-mail:daijunzhi@163.com
  • 基金资助:
    西北有色地质矿业集团博士后项目(西色地发[2016]46号)

Geological Characteristics and S Isotopic Compositions of Pyrite from Lianzigou Gold Deposit in Xiaoqinling Area, and It's Genetic Significance

Dai Junzhi1,2, Gao Jusheng1, Qian Zhuangzhi2, Zhang Longbin3, Zhou Jinlong3, Li Ping3, Gao Yi3   

  1. 1. Northwest Geological and Mining Group Co. Ltd. for Nonferrous Metals, Xi'an 710054, China;
    2. School of Earth Science and Resources, Chang'an University, Xi'an 710054, China;
    3. No.712 General Party Co. Ltd. of Northwest Mining and Geology for Nonferrous Metals, Xianyang 712000, Shaanxi, China
  • Received:2018-03-20 Published:2018-11-26
  • Supported by:
    Support by Postdoctor Program of Northwest Geological and Mining Group Co.Ltd.for Nonferrous Metals (NWME[2016]46)

摘要: 镰子沟金矿床位于华北陆块南缘小秦岭金矿矿集区西部,矿体赋存于太华群上部岩层内,受断裂构造和石英脉控制,带状钾长石化是矿床典型的围岩蚀变,矿物组合为石英-黄铁矿-方铅矿-黄铜矿±重晶石±磁铁矿。为了探讨成矿物质来源及矿床成因,采用LA-MC-ICP-MS技术对镰子沟金矿床黄铁矿进行原位微区硫同位素分析,获得单颗粒黄铁矿的硫同位素变化范围为-15.27‰~-11.98‰,平均-13.35‰,小于共生重晶石硫同位素值9.8‰~12.4‰。根据硫化物与共生硫酸盐矿物,估算成矿热源总硫值为-3.6‰,与新太古界太华群和燕山期华山花岗岩均不同。综合矿化蚀变、地球化学及同位素组成,认为太华群对金矿床成矿物质来源的影响较华山花岗岩明显,但非主要来源,金矿床成矿与深部流体或隐伏岩体有关,矿床受深部流体和构造控制,深部仍有寻找构造蚀变型或微细浸染型金矿体的潜力,但规模有限。

关键词: 镰子沟金矿床, 原位硫同位素, 成矿物质, 深源流体, 小秦岭

Abstract: The Lianzigou gold deposit is located in the west of Xiaoqinling gold mineralization concentrated region, the south margin of the North China craton. The orebodies are hosted in the upper strata of Taihua group and controlled by fault fracture zones or quartz veins. The surficial and zonal potassic alteration is the typical wall rock alteration. The mineral assemblage is quartz-pryite-galena-chalcopyrite±barite±magnetite. For discussion of the ore-forming materials and ore genesis, the S isotopic compositions of pyrites of the gold deposit were measured by using Laser-ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). The S isotopic compositions in different ore-forming stages range from -15.27‰ to -11.98‰, with an average of -13.35‰, which is less than the S isotopic value (9.8‰ -12.4‰) of barite. We calculated the total S isotopic value (-5.5‰) of the coexisting barite, which is different from Taihua group and those granites of Yanshanian. Based on the geological characteristics and isotopic compositions, Taihua group had obvious influence on the source of the ore-forming materials than those granites of Yanshanian (Huashan pluton), but not the major source. Deep fluids or pluton is the possible mineralization sources of the Lianzigou gold deposit. The gold deposit is controlled by deep fluids and structure. There is a potential to find structural altered rock type or fine disseminated type of gold deposits in the deep part,but its scale will be limited.

Key words: Lianzigou gold deposit, in-situ S isotopic, ore-forming materials, deep fluids, Xiaoqinling

中图分类号: 

  • P618.51
[1] 郑永飞,陈江峰. 稳定同位素地球化学[M]. 北京:科学出版社,2000:1-247. Zheng Yongfei, Chen Jiangfeng. StableIsotope Geochemistry[M]. Beijing:Geological Publishing House, 2000:1-247.
[2] 付佳丽. 利用LA-MC-ICP-MS原位微区精确测定硫化物和硫单质中的硫同位素组成[D].武汉:中国地质大学,2016:1-30. Fu Jiali. In Situ Sulfur Isotopes (δ34S and δ33S) Analyses in Sulfides and Elemental Sulfur Using High Sensitivity Cones Combination with the Addition of Nitrogen by Laser Ablation MC-ICP-MS(Dissertation for Master's Degree)[D]. Wuhan:China University of Geosciences, 2016:1-30.
[3] Riciputi L R, Greenwood J P. Analysis of Sulfur and Carbon Isotope Ratios in Mixed Matrices by Secondary Ion Mass Spectrometry:Implications for Mass Bias Corrections[J]. Int J Mass Spectrom, 1998, 178:65-71.
[4] Betti M. Isotope Ratio Measurements by Secondary Ion Mass Spectrometry (SIMS) and Glow Discharge Mass Spectrometry (GDMS)[J]. Int J Mass Spectrom, 2005,242:169-182.
[5] Rumble D, Hoering T C, Palin J M. Preparation of SF6 for Sulfur Isotope Analysis by Laser Heating Sulfide Minerals in the Presence of F2 Gas[J]. Geochimica et Cosmochimica Acta, 1993, 57:4499-4512.
[6] Beaudoin G, Taylor B E, Rumble Ⅲ D, et al. Variations in the Sulfur Isotope Composition of Troilite from the Cañon Diablo Iron Meteorite[J]. Geochimica et Cosmochimica Acta, 1994, 58:4253-4255.
[7] Hu G X, Rumble D, Wang P L. An Ultraviolet Laser Microprobe for the in Situ Analysis of Multisulfur Isotopes and Its Use in Measuring Archean Sulfur Isotope Mass-Independent Anomalies[J]. Geochimica et Cosmochimica Acta, 2003, 67(17):3101-3118.
[8] Jackson S E, Günther D. The Nature and Sources of Laser Induced Isotopic Fractionation in Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry[J]. J Anal At Spectrom, 2003, 18:205-212.
[9] Košler J, Pedersen R B, Kruber C, et al. Analysis of Fe Isotopes in Sulfides and Iron Meteorites by Laser Ablation High-Mass Resolution Multi-Collector ICP Mass Spectrometry[J]. J Anal At Spectrom, 2005, 20:192-199.
[10] Mason P R D, Košler J, de Hoog J C M, et al. In Situ Determination of Sulfur Isotopes in Sulfur-Rich Materials by Laser Ablation Multiple-Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS)[J]. J Anal At Spectrom, 2006, 21:177-186.
[11] Craddock P R, Rouxel O J, Ball L A, et al. Sulfur Isotope Measurement of Sulfate and Sulfide by High-Resolution MC-ICP-MS[J]. Chem Geol, 2008, 253:102-113.
[12] Fu J L, Hu Z C, Zhang W, et al. In Situ Sulfur Isotopes (δ34S and δ33S) Analyses in Sulfides and Elemental Sulfur Using High Sensitivity Cones Combined with the Addition of Nitrogen by Laser Ablation MC-ICP-MS[J]. Analytica Chimica Acta, 2016, 911:14-26.
[13] Zhu Z Y, Jiang S Y, Ciobanu C L, et al. Sulfur Isotope Fractionation in Pyrite During Laser Ablation:Implications for Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry Mapping[J]. Chemical Geology, 2016, 450:223-234.
[14] 李栋,高毅,路卫东. 小秦岭镰子沟蚀变岩型金矿地质特征及找矿标志[J]. 科技风,2014(4):67-69. Li Dong, Gao Yi, Lu Weidong. Geology Features and Ore Indicators of Structure Altered Rock Type Gold Deposit of Lianzigou, Xiaoqinling[J]. Technology Wind, 2014(4):67-69.
[15] 王雷. 小秦岭镰子沟金矿床地质地球化学特征与矿床成因探讨[D]. 北京:中国地质大学,2016:37-66. Wang Lei. Studies on Geological and Geochemical Characteristics and Genesis of the Lianzigou Gold Deposit in Xiaoqinling District[D]. Beijing:China University of Geosciences, 2016:37-66.
[16] 卢欣祥,尉向东,于在平,等. 小秦岭-熊耳山地区金矿的成矿流体特征[J]. 矿床地质,2003,22(4):377-386. Lu Xinxiang, Yu Xiangdong, Yu Zaiping, et al. Characteristics of Ore-Forming Fluids in Gold Deposits of Xiaoqinling Xiong'ershan Area[J]. Mineral Deposits, 2003, 22(4):377-386.
[17] 付治国,瓮纪昌,卢欣祥. 小秦岭-熊耳山地区金矿硫同位素地球化学特征[J]. 物探与化探,2009,33(5):507-514. Fu Zhiguo, Wong Jichang, Lu Xinxiang. Sulfur Isotope Geochemical Characteristics of Gold Deposits in Xiaoqinling Xionger Mountain Area[J]. Geophysical & Geochemical Exploration, 2009, 33(5):507-514.
[18] 晁援,王德欣. 小秦岭金矿的硫同位素组成特征及硫来源的探讨[J]. 陕西地质,1990,8(2):73-84. Chao Yuan, Wang Dexin. On the Characteristics of the Sulfur Isotope Constitutions and the Sulfur Source of the Xiaoqinling Gold Field[J]. Geology of Shaanxi, 1990, 8(2):73-84.
[19] 周新春,徐斌,翟明国,等. 陕西秦岭驾鹿金矿区发现的含氧金矿物[J]. 矿物学报,2008,28(2):196-206. Zhou Xinchun, Xu Bin, Zhai Mingguo, et al. Study onMineralogy of Oxygen-Beraring Gold Minerals Found in the Jialu Gold Ore Zone, Qinling Mountain, Shaanxi Province[J]. Acta Mineralogica Sinica, 2008, 28(2):196-206.
[20] Ohmoto H. Systematics of Sulfur and Carbon Iso-topes in Hydrothermal Ore Deposits[J]. Economic Geology, 1972, 67:551-578.
[21] Ohmoto H, Rye R O. Isotopes of Sulfur and Carbon[C]//Geochemistry of Hydrothennal Ore Deposits. New York:John Wiley and Sons, 1979:509-567.
[22] Zhao Rui. Sulphur Isotope Coexisting-Equilibrium Fractionation Model of Hydrothermal Fluid and the Minerals Crystallized[J]. Chinese Sci Bul, 1987, 32:1188-1192.
[23] 范宏瑞,谢奕汉,赵瑞,等. 豫西熊耳山地区岩石和金矿床稳定同位素地球化学研究[J]. 地质找矿论丛,1994,9(1):54-64. Fan Hongrui, Xie Yihan, Zhao Rui, et al. Stable Isotope Geochemistry of Rock and Gold Deposits in the Xiongershan Area Western Henan Province[J]. Contributions to Geology and Mineral Resources Research, 1994, 9(1):54-64.
[24] Pinckney D M, Rafter T A. Fractionation of Sulfur Isotopes During Ore Deposition in the Upper Mississippi Valley Zinc-Lead District[J]. Economic Geology, 1972, 67(3):315-328.
[25] 黎世美,瞿伦全,苏振邦,等. 小秦岭金矿地质和成矿预测[M]. 北京:地质出版社,1996:39-178. Li Shimei, Qu Lunquan, Su Zhenbang, et al. Geology and Metallogenic Prediction of the Xiaoqinling Gold Deposits[M]. Beijing:Geological Publishing House, 1996:39-178.
[26] 吴晓贵. 小秦岭东桐峪金矿床稳定同位素地球化学及成矿物质来源[J]. 西北地质,2016,49(4):91-98. Wu Xiaogui. Stable Isotope Geochemistry and Ore-Forming Material of the Dongtongyu Gold Deposit in Xiaoqinling Area, China[J]. Northwestern Geology, 2016, 49(4):91-98.
[27] 胡正国,钱壮志. 陕西潼峪金矿床的形成机理:同生构造型金矿成矿模式探讨[J]. 地质学报,1990,64(2):142-156. Hu Zhengguo, Qian Zhuangzhi. Ore-Forming Mechanism of the Tongyu Gold deposit, Shaanxi:A Discussion on the Metallogenic Model of the Syntectonic Gold Deposit[J]. Acta Geologica Sinica, 1990, 64(2):142-156.
[28] 黄建军. 陕西小秦岭金矿同位素组成特征及成矿物质来源[J]. 黄金科技动态,1991,6:5-16. Huang Jianjun. Isotope Characteristics and Material Source of Gold Deposits in Shaanxi Xiaoqinling Area[J]. Gold Science and Technology, 1991, 6:5-16.
[29] 冯建之,岳铮生,肖荣阁,等. 小秦岭深部金矿成矿规律与成矿研究[M]. 北京:地质出版社,2009:44-252. Feng Jianzhi, Yue Zhengsheng, Xiao Rongge, et al. Metallogenic Regularity and Prediction for Gold Deposit in the Deep of Xiaoqinling Area, China[M]. Beijing:Geological Publishing House, 2009:44-252.
[30] 张兴康,叶会寿,张维,等. 豫西熊耳山地区吉家洼金矿床成矿物质来源探讨:碳、氧、硫、铅同位素地球化学证据[J]. 矿床地质, 2017, 36(3):595-610. Zhang Xingkang, Ye Huishou, Zhang Wei,et al. C, O, S and Pb Isotopic Constraints on Ore-Forming Material Sources of Jijiawa Gold Deposit in Xiong'er Mountain Area, Western Henan[J]. Mineral Deposits, 2017, 36(3):595-610.
[31] 王建其,朱赖民,郭波,等. 华北陆块南缘华山、老牛山及合峪花岗岩体Sr-Nd, Pb同位素组成特征及其地质意义[J]. 矿物岩石,2015,35(1):63-72. Wang Jianqi, Zhu Laimin, Guo Bo, et al. Characteristics of Sr-Nd and Pb Isotopic Composition and Its Geological Significance of Granitic Plutons in the Huashan, Laoniushan and Heyu Area at the Southern Margin of North China Craton[J]. Journal of Mineralogy and Petrology, 2015, 35(1):63-72.
[32] 倪智勇,李诺,张辉,等. 河南大湖金钼矿床成矿物质来源的锶钕铅同位素约束[J]. 岩石学报,2009,25(11):2823-2832. Ni Zhiyong, Li Nuo, Zhang Hui, et al. Pb-Sr-Nd Isotope Constraints on the Source of Ore-Forming Elements of the Dahu Au Mo Deposit, Henan Province[J]. Acta Petrologica Sinica, 2009, 25(11):2823-2832.
[33] 卢欣祥,尉向东,董有,等. 小秦岭-熊耳山地区金矿时代[J]. 黄金地质,1999,5(1):11-16. Lu Xinxiang,Yu Xiangdong, Dong You, et al. The Metallogenetic Epoch of Gold Deposits in Xiaoqinling Xiong'ershan Region[J]. Gold Geology, 1999, 5(1):11-16.
[34] 王义天,毛景文,卢欣祥,等. 河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar-39Ar年龄及其意义[J]. 科学通报,2002,47(18):1427-1431. Wang Yitian, Mao Jingwen, Lu Xinxiang, et al. 40Ar-39Ar Dating and Geological Implication of Auriferous Altered Rocks from the Middle-Deep Section of Q875 Gold-Quartz Vein in Xiaoqinling Area, Henan, China[J].Chinese Science Bulletin, 2002, 47(18):1427-1431.
[35] 张元厚,李宗彦, 张孝民,等. 小秦岭金(钼)矿田北矿带推覆构造演化与成矿作用[J]. 吉林大学学报(地球科学版),2009,39(2):244-254. Zhang Yuanhou, Li Zongyan, Zhang Xiaomin, et al. Overthrust Development and Its Relationship to Gold Mineralizaiton in the Northern Belt of the Xiaoqinling Gold(Molybdenum) Province, Central China[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(2):244-254.
[36] Li J W, Bi S J, Selby D, et al. Giant Mesozoic Gold Provinces Related to the Destruction of the North China Craton[J]. Earth & Planetary Science Letters, 2012, 349(4):26-37.
[37] 唐克非. 华北克拉通南缘熊耳山地区金矿床时空演化、矿床成因及成矿构造背景[D]. 武汉:中国地质大学,2014:74-85. Tang Kefei. Characteristics, Genesis, and Geodynamic Setting of Representative Gold Deposits in the Xiong'ershan District, Southern Margin of the North China Craton[D]. Wuhan:China University of Geosciences, 2014:74-85.
[38] 郭波,朱赖民,李犇,等. 华北陆块南缘华山和合峪花岗岩岩体锆石U-Pb年龄、Hf同位素组成与成岩动力学背景[J]. 岩石学报,2009,25(2):265-281. Guo Bo, Zhu Laimin, Li Ben, et al. Zircon U-Pb Age and Hf Isotope Composition of the Huashan and Heyu Granite Plutons at the Southern Margin of North China Craton:Implications for Geodynamic Setting[J]. Acta Petrologica Sinica, 2009, 25(2):265-281.
[39] 王义天,叶会寿,叶安旺,等. 小秦岭文峪和娘娘山花岗岩体锆石SHRIMP U-Pb年龄及其意义[J]. 地质科学,2010,45(1):167-180. Wang Yitian, Ye Huishou, Ye Anwang, et al. Zircon SHRIMP U-Pb Ages and Their Significances of the Wenyu and Niangniangshan Granitic Plutons in the Xiaoqinling Area, Central China[J]. Chinese Journal of Geology, 2010, 45(1):167-180.
[40] 朱赖民,张国伟,郭波,等. 东秦岭金堆城大型斑岩钼矿床LA-ICP-MS锆石U-Pb定年及成矿动力学背景[J].地质学报,2008,82(2):204-220. Zhu Laimin, Zhang Guowei, Guo Bo, et al. U-Pb(LA-ICP-MS) Zircon Dating for the Large Jinduicheng Porphyry Mo Deposit in the East China, and Its Metallogenic Setting[J]. Acta Petrologica Sinica, 2008, 82(2):204-220.
[41] 王晓霞,王涛,齐秋菊,等. 秦岭晚中生代花岗岩时空分布、成因演变及构造意义[J]. 岩石学报,2011,27(6):1573-1593. Wang Xaioxia, Wang Tao, Qi Qiuju, et al. Temporal-Spatial Variations, Origin and Their Tectonic Significance of the Late Mesozoic Granites in the Qinling, Central China[J]. Acta Petrologica Sinica, 2011, 27(6):1573-1593.
[42] 祁进平,赖勇,任康绪,等. 小秦岭金矿田成因的锶同位素约束[J]. 岩石学报,2006,22(10):2543-2550. Qi Jinping, Lai Yong, Ren Kangxu, et al. Sr-Isotope Constraint on the Origin of the Xiaoqinling Gold Field[J]. Acta Petrologica Sinica, 2006, 22(10):2543-2550.
[43] 杜乐天. 碱交代岩研究的重大成因意义[J]. 矿床地质,2002,21(增刊):953-958. Du Letian. The Important Significance of Alkali-Metasomatic Rock Studies[J]. Mineral Deposits, 2002, 21(Sup.):953-958.
[44] 杜乐天. 烃碱流体地球化学原理:重论热液作用和岩浆作用[M].北京:科学出版社,1996:1-552. Du Letian. Geochemical Principles of Hydrocarbon Alkali-Fluids:Reconstruction of Hydrothermalism and Magmatism Theory[M]. Beijing:Science Press, 1996:1-552.
[45] 胡受奚,叶瑛,方长泉. 交代蚀变岩岩石学及其找矿意义[M]. 北京:地质出版社,2004:28-32,71-75. Hu Shouxi, Ye Ying, Fang Changquan. Petrology of theMetasomatically Altered Rocks and Its Significance in Prospecting[M]. Beijing:Geological Publishing House, 2004:28-32,71-75.
[46] 刘晓峰. 小秦岭西段驾鹿金矿田成矿条件及找矿前景浅析[J]. 有色金属矿产与勘查,1999,8(1):35-41. Liu Xiaofeng. Metallogenic Conditions and Prospecting of the Jialu Gold Ore Field, Western Xiaoqinling[J]. Geological Exploration for Non-Ferrous Metals, 1999, 8(1):35-41.
[47] 代军治,钱壮志,高菊生,等. 小秦岭镰子沟金矿床构造叠加晕特征及深部预测[J]. 西北地质,2017,50(4):166-175. Dai Junzhi, Qian Zhuangzhi, Gao Jusheng, et al. The Structural Superimposed Halos's Features and Deep Predicition of Lianzigou Gold Deposit in Xiaoqinling Area[J]. Northwest Geology, 2017, 50(4):166-175.
[1] 伍登浩, 高顺宝, 郑有业, 田坎, 张永超, 姜军胜, 余泽章, 黄鹏程. 西藏班公湖—怒江成矿带南侧矽卡岩型铜多金属矿床S、Pb同位素组成及成矿物质来源[J]. 吉林大学学报(地球科学版), 2018, 48(1): 70-86.
[2] 张朋, 杨宏智, 李斌, 寇林林, 杨凤超. 辽东青城子矿集区姚家沟钼矿床成矿物质来源、成矿年代及成矿动力学背景[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1684-1696.
[3] 贾福聚, 燕永锋, 伍伟, 刘晓玮. 云南老君山锡多金属成矿区硫、铅、氢、氧同位素地球化学[J]. 吉林大学学报(地球科学版), 2016, 46(1): 105-118.
[4] 马桂霞,刘富营,苏犁,韩衣贵,王清海. 华北克拉通小秦岭地区元古宙正长岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1457-1470.
[5] 李春麟,余心起,刘俊来,王北颖,陈帅奇,代堰锫. 小秦岭东吉口印支期辉石正长岩年代学及其地质意义[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1806-1816.
[6] 叶霖, 杨玉龙, 高伟, 刘铁庚. 陕南铜厂铜矿床成矿物质来源探讨[J]. J4, 2012, 42(1): 92-103.
[7] 张元厚, 李宗彦,张孝民,钱明平,杨志强,何岳,张帅民,张力智,王建明. 小秦岭金(钼)矿田北矿带推覆构造演化与成矿作用[J]. J4, 2009, 39(2): 244-0254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!