吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (6): 1889-1897.doi: 10.13278/j.cnki.jjuese.20170310
• 地球探测与信息技术 • 上一篇
魏伟, 周云轩, 田波, 钱伟伟, 湛玉剑, 黄盖先
Wei Wei, Zhou Yunxuan, Tian Bo, Qian Weiwei, Zhan Yujian, Huang Gaixian
摘要: 海岸带潮滩地形具有快速变化的特点;在盐沼植被覆盖的潮滩区域,地面激光扫描仪(terrestrial laser scanning,TLS)获取地形数据受到地表植被的影响。为了研究TLS在盐沼潮滩使用的地形测量精度与盐沼植被种类、盖度的关系,本文以芦苇群落、白茅群落、互花米草群落、海三棱藨草群落4种典型海岸带盐沼植被群落为研究对象,在移动窗口法的基础上辅以聚类分析的植被滤除算法,分别从点云原始数据中恢复地表地形地貌特征。研究结果表明:1)植被盖度越高,TLS反演地形精度越低,两者负相关。2)不同植被的激光穿透能力不同:盖度大于50%时,激光无法穿透原始盖度分别为70%、65%、65%的白茅群落、互花米草群落、海三棱藨草群落,均方根误差(root-mean-square error,RMSE)分别为22.0、22.0、8.6 cm;盖度等于50%时,白茅群落、海三棱藨草群落、芦苇群落和互花米草群落的RMSE分别为16.0、6.6、4.5、5.7 cm;盖度小于50%时,芦苇群落、互花米草群落、海三棱藨草群落地形反演精度小幅度提高,白茅群落地形反演精度提升较为明显。3)在盐沼潮滩地区使用TLS反演地形时,增加TLS架设高度、对同一区域多方位反复扫描可能有助于提高地形反演效果。
中图分类号:
[1] 陈吉余, 程和琴, 戴志军. 滩涂湿地利用与保护的协调发展探讨:以上海市为例[J]. 中国工程科学, 2007, 9(6):11-17. Chen Jiyu, Cheng Heqin, Dai Zhijun. Compatibility of Utilization and Protection of Tidal Flat and Wetland:A Case Study in Shanghai Area[J]. Engineering Science, 2007, 9(6):11-17. [2] 王卿.长江口盐沼植被群落分布动态及互花米草入侵的影响[D]. 上海:复旦大学, 2007. Wang Qing. The Dynamics of Plant Community Distribution of the Salt Marshes in the Yangtze River Estuary as Influenced by Spartina Alterniflora Invasions[D]. Shanghai:Fudan University, 2007. [3] 袁兴中, 陆健健, 刘红. 河口盐沼植物对大型底栖动物群落的影响[J]. 生态学报, 2002, 22(3):326-333. Yuan Xingzhong, Lu Jianjian, Liu Hong. Influence of Characteristics of Scirpus Mariqueter Community on the Benthic Macro-Invertebrate in a Salt Marsh of the Changjiang Estuary[J]. Acta Ecologica Sinica, 2002, 22(3):326-333. [4] 常直杨, 王建, 李晶冰,等. 基于地面激光扫描仪的潮滩地貌研究初探[J]. 海洋通报, 2016, 35(3):258-263. Chang Zhiyang, Wang Jian, Li Jingbing, et al. Preliminary Study About the Geomorphology in the Tidal Flat Based on the Terrestrial Laser Scanning[J]. Marine Science Bulletin, 2016, 35(3):258-263. [5] Hannam M, Moskal L. Terrestrial Laser Scanning Reveals Seagrass Microhabitat Structure on a Tideflat[J]. Remote Sensing, 2015, 7(3):3037-3055. [6] Guarnieri A, Vettore A, Pirotti F, et al. Retrieval of Small-Relief Marsh Morphology from Terrestrial Laser Scanner, Optimal Spatial Filtering, and Laser Return Intensity[J]. Geomorphology, 2009, 113(1/2):12-20. [7] 高占国. 长江口盐沼植被的光谱特征研究[D]. 上海:华东师范大学, 2006. Gao Zhanguo. A Study on the Spectral Characteristics of Salt Marsh Vegetation in Yangtze Estuary[D]. Shanghai:East China Normal University, 2006. [8] 陈勇, 何中发, 黎兵,等. 崇明东滩潮沟发育特征及其影响因素定量分析[J]. 吉林大学学报(地球科学版), 2013, 43(1):212-219. Chen Yong, He Zongfa, Li Bing, et al. Spatial Distribution of Tidal Creeks and Quantitative Analysis of Its Driving Factors in Chongming Dongtan, Shanghai[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(1):212-219. [9] 李贺鹏, 张利权, 王东辉. 上海地区外来种互花米草的分布现状[J]. 生物多样性, 2006, 14(2):114-120. Li Hepeng, Zhang Liquan, Wang Donghui. Distribution of an Exotic Plant Spartina Alterniflora in Shanghai[J]. Biodiversity Science, 2006, 14(2):114-120. [10] 张云霞, 张云飞, 李晓兵. 地面测量与ASTER影像综合计算植被盖度[J]. 生态学报, 2007, 27(3):964-976. Zhang Yunxia, Zhang Yunfei, Li Xiaobing. The Synthetically Estimating Vegetation Fractional Coverage of Grassland Using Field Data and ASTER Remote Sensing in Agine[J]. Acta Ecologica Sinica, 2007, 27(3):964-976. [11] 孙智慧, 陆声链, 郭新宇,等. 基于点云数据的植物叶片曲面重构方法[J]. 农业工程学报, 2012, 28(3):184-190. Sun Zhihui, Lu Shenglian, Guo Xinyu, et al. Surfaces Reconstruction of Plant Leaves Based on Point Cloud Data[J]. Transactions of the CSAE, 2012, 28(3):184-190. [12] Petzold B. Results of the OEEPE WG on Laser Data Acquisitions[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33:718-741. [13] Coveney S, Fotheringham A S. Terrestrial Laser Scan Error in the Presence of Dense Ground Vegetation[J]. Photogrammetric Record, 2011, 26:307-324. [14] Latypov D. Estimating Relative Lidar Accuracy Infor-mation from Overlapping Flight Lines[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2002, 56(4):236-245. [15] Wang C, Menenti M, Stoll M P, et al. Separation of Ground and Low Vegetation Signatures in LiDAR Measurements of Salt-Marsh Environments[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(7):2014-2023. [16] Fan L, Powrie W, Smethurst J, et al. The Effect of Short Ground Vegetation on Terrestrial Laser Scans at a Local Scale[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2014, 95(3):42-52. [17] Ge Z, Shi H, Mei X, et al. Semi-Automatic Reco-gnition of Marine Debris on Beaches[J]. Scientific Reports, 2016, 6:25759. |
[1] | 胥为, 周云轩, 沈芳, 田波, 于鹏. 基于Sentinel-1A雷达影像的崇明东滩芦苇盐沼植被识别提取[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1192-1200. |
[2] | 王卫平, 曾昭发, 李静, 吴成平. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 941-951. |
[3] | 顾观文,吴文鹂,李桐林. 大地电磁场三维地形影响的矢量有限元数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1678-1686. |
[4] | 朱渊,余斌,亓星,王涛,陈源井. 地形条件对泥石流发育的影响:以岷江流域上游为例[J]. 吉林大学学报(地球科学版), 2014, 44(1): 268-277. |
[5] | 刘浩,赵文吉,段福洲,曹巍,李家存. 面向地震灾害场景建模的三维地形交互改造技术[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1687-1696. |
[6] | 汤井田, 辛会翠, 王冉. 点电源下复杂角域地形影响及校正[J]. J4, 2012, 42(1): 254-261. |
[7] | 刘海飞, 柳建新, 郭荣文, 邓小康, 阮百尧. 起伏地形三维激电连续介质模型快速反演[J]. J4, 2011, 41(4): 1212-1218. |
[8] | 林家勇, 汤井田, 丁茂斌, 杨晓弘, 杨树云. 复杂地形条件下激发极化有限单元法三维数值模拟[J]. J4, 2010, 40(5): 1183-1187. |
[9] | 龚文峰, 杜崇, 范文义. 基于GIS的景观空间格局地形分布及生态效应的研究--以黑龙江省尚志市帽儿山地区为例[J]. J4, 2009, 39(5): 899-906. |
[10] | 赵广茂,李桐林,王大勇,李建平. 基于二次场二维起伏地形MT有限元数值模拟[J]. J4, 2008, 38(6): 1055-1059. |
[11] | 朱 华 吉. 地形数据库增量信息数据建模及其RDF描述[J]. J4, 2007, 37(1): 195-0199. |
|