吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (4): 974-989.doi: 10.13278/j.cnki.jjuese.201704102

• 地质与资源 • 上一篇    下一篇

全球前寒武—寒武系含油气盆地石油地质特征及成藏主控因素

陈斐然1,2, 张颖2, 徐祖新2, 谭程3, 周肖肖3   

  1. 1. 中国石化勘探南方分公司勘探研究院, 成都 610041;
    2. 中国石油勘探开发研究院, 北京 100083;
    3. 中国石油大学(北京)地球科学学院, 北京 102249
  • 收稿日期:2016-10-30 出版日期:2017-07-26 发布日期:2017-07-26
  • 作者简介:陈斐然(1988—),男,博士,主要从事油气藏形成分布与勘探研究,E-mail:feiran_c@163.com
  • 基金资助:
    国家科技重大专项(2011ZX05004)

Petroleum Geological Characteristics and Main Control Factors of Oil and Gas Accumulations in the Global Precambrian-Cambrian Petroliferous Basin

Chen Feiran1,2, Zhang Ying2, Xu Zuxin2, Tan Cheng3, Zhou Xiaoxiao3   

  1. 1. Exploration Research Institute of Sinopec Exploration Southern Company, Chengdu 610041, China;
    2. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China;
    3. College of Geosciences, China University of Petroleum, Beijing 102249, China
  • Received:2016-10-30 Online:2017-07-26 Published:2017-07-26
  • Supported by:
    Supported by National Science and Technology Major Project(2011ZX05004)

摘要: 前寒武—寒武系油气作为我国中西部含油气盆地未来油气勘探的重要接替领域,近年来受到广泛关注。本文以阿曼和东西伯利亚盆地为例,阐述全球典型前寒武—寒武系古老含油气盆地石油地质特征及成藏主控因素,为国内前寒武—寒武系油气勘探取得进一步突破提供参考。阿曼和东西伯利亚盆地烃源岩主要发育在盆地初始裂陷作用区,受埋深及地温梯度控制,在志留纪或泥盆纪之前就已大量生油;储集层岩性以砂岩为主,分布面积广,受表生风化淋滤、胶结物溶蚀及构造裂缝改造等后期作用影响,可形成优质区域性储层;优质的区域性盖层是前寒武—寒武系古老油气藏得以保存的关键性因素,盆地膏盐岩累计厚度都超过1 000 m。塔里木盆地寒武系盐下深层含油气层系,同国外古老含油气盆地相比,同样具有多套高丰度优质烃源岩生烃、厚层区域性膏盐岩封堵及长距离运移、多层系成藏特征,具有良好的油气勘探潜力。

关键词: 前寒武&mdash, 寒武系, 阿曼盆地, 东西伯利亚盆地, 石油地质特征, 塔里木盆地

Abstract: Since the great potential of Precambrian-Cambrian strata for oil and gas exploration in the central and western of China has been discovered, it had attracted widespread attention recent years. In this paper, the petroleum geological characteristics and main control factors for the hydrocarbon accumulation of the typical Precambrian-Cambrian basins are described, taking the Oman basin and East Siberian basin for example. We expect to provide a meaningful reference for the oil and gas exploration breakthrough in Precambrian-Cambrian basins of China. The source rocks of Oman basin and East Siberian basin both developed in the initial rifting area, which have generated lots of hydrocarbons before Silurian or Devonian under the control of depth. Sandstone distributed widely as the main reservoir lithology, which can be transformed into high-quality regional reservoirs by post-reformation impacts, such as weathering, leaching, cement dissolution and tectonic fractures.The cumulative thickness of gypsum-salt strata is more than 1 000 m, which is the key factor of the regional seal to preserve the ancient reservoirs generated from the Precambrian-Cambrian stratum, after compared with the petroleum geological characteristics of the other Precambrian-Cambrian basins, we can find that Tarim basin Cambrian petroleum system also has the characteristics of an ancient giant fields, which mainly includes the development of several sets of high abundance of high-quality hydrocarbon source rocks, a thick layer of rock salt paste regional cap and accumulation hydrocarbon in multiple depths after long-distance migration. These indicate that the Tarim basin Cambrian has huge oil and gas exploration potential.

Key words: Precambrian-Cambrian, Oman basin, East Siberian basin, petroleum geological characteristics, Tarim basin

中图分类号: 

  • P618.13
[1] Zhu Guangyou, Wang Huitong, Weng Na, et al. Use of Comprehensive Two-Dimensional Gas Chromatography for the Characterization of Ultra-deep Condensate from the Bohai Bay Basin, China[J]. Organic Geochemistry, 2013,63:8-17.
[2] 朱光有, 张水昌. 中国深层油气成藏条件与勘探潜力[J].石油学报,2009,30(6):793-802. Zhu Guangyou, Zhang Shuichang. Hydrocarbon Accumulation Conditions and Exploration Potential of Deep Reservoirs in China[J]. Acta Petrolei Sinica, 2009,30(6):793-802.
[3] 高志前, 樊太亮,杨伟红, 等. 塔里木盆地下古生界碳酸盐岩台缘结构特征及其演化[J]. 吉林大学学报(地球科学版), 2012, 42(3):657-665. Gao Zhiqian, Fan Tailiang, Yang Weihong, et al. Structure Characteristics and Evolution of the Eopaleozoic Carbonate Platform in Tarim Basin [J]. Journal of JilinUniversity (Earth Science Edition), 2012, 42(3):657-665.
[4] 旷理雄, 郭建华, 黄太柱. 塔里木盆地阿克库勒凸起于奇地区哈拉哈塘组油气成藏机制[J]. 吉林大学学报(地球科学版), 2008, 38(2):249-254. Kuang Lixiong, Guo Jianhua, Huang Taizhu. Forming Mechanism of Hydrocarbon Reservoirs of Halahatang Formation in Yuqi Block in Akekule Arch, Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(2):249-254.
[5] 杨海军, 韩剑发, 孙崇浩, 等. 塔中北斜坡奥陶系鹰山组岩溶型储层发育模式与油气勘探[J]. 石油学报, 2011,32(2):199-205. Yang Haijun, Han Jianfa, Sun Chonghao, et al. A Development Model and Petroleum Exploration of Karst Reservoirs of Ordovician Yingshan Formation in the Northern Slope of Tazhong Palaeouplift[J]. Acta Petrolei Sinica, 2011,32(2):199-205.
[6] 朱光有, 杨海军, 朱永峰, 等. 塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J]. 岩石学报, 2011,27(3):827-844. Zhu Guangyou, Yang Haijun, Zhu Yongfeng, et al. Study on Petroleum Geological Caracteristics and Accumulation of Carbonate Reservoirs in Hanilcatam Area, Tarim Basin[J]. Acta Petrologica Sinica, 2011,27(3):827-844.
[7] Zhu Guangyou, Zhang Shuichang, Su Jin, et al. Altera-tion and Multi-Stage Accumulation of Oil and Gas in the Ordovician of the Tabei Uplift, Tarim Basin, NW China: Implications for Genetic Origin of the Diverse Hydrocarbons[J]. Marine and Petroleum Geology, 2013,46:234-250.
[8] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014(3):278-293. Zou Caineng, Du Jinhu, Xu Chunchun, et al. Formation,Distribution, Resource Potential and Discovery of the Sinian-Cambrian Giant Gas Field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2014(3):278-293.
[9] Zhu Guangyou, Wang Tongshan, Xie Zengye, et al. Giant Gas Discovery in the Precambrian Deeply Buried Reservoirs in the Sichuan Basin, China: Implications for Gas Exploration in Old Cratonic Basins[J]. Precambrian Research,2015,262:45-66.
[10] 魏国齐, 杜金虎, 徐春春, 等. 四川盆地高石梯—磨溪地区震旦系—寒武系大型气藏特征与聚集模式[J]. 石油学报, 2015,36(1):1-12. Wei Guoqi, Du Jinhu, Xu Chunchun, et al. Characteristics and Accumulation Modes of Large Gas Reservoirs in Sinian-Cambrian of Gaoshiti-Moxi Region, Sichuan Basin[J]. Acta Petrolei Sinica, 2015,36(1):1-12.
[11] 王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014,19(2):1-13. Wang Zhaoming, Xie Huiwen, Chen Yongquan, et al. Discovery and Exploration of Cambrian Subsalt Dolomite Original Hydrocarbon Reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration, 2014,19(2):1-13.
[12] 谷志东, 汪泽成, 胡素云, 等. 全球海相碳酸盐岩巨型油气田发育的构造环境及勘探启示[J]. 天然气地球科学, 2012,23(1):106-118. Gu Zhidong, Wang Zecheng, Hu Suyun, et al. Tectonic Settings of Global Marine Carbonate Giant Fields and Exploration Significance[J]. Natural Gas Geoscience, 2012,23(1):106-118.
[13] 白国平. 世界碳酸盐岩大油气田分布特征[J]. 古地理学报, 2006(2):241-250. Bai Guoping. Distribution Patterns of Giant Carbonate Fields in the World[J]. Journal of Palaeogeography, 2006(2):241-250.
[14] 李江海, 王洪浩, 李维波, 等. 显生宙全球古板块再造及构造演化[J]. 石油学报, 2014,35 (2):207-218. Li Jianghai, Wang Honghao, Li Weibo, et al. Discussion on Global Tectonics Evolution from Plate Reconstruction in Phanerozoic[J]. Acta Petrolei Sinica, 2014,35(2):207-218.
[15] 靳久强, 宋建国. 中国板块构造对油气盆地演化和油气分布特征的控制[J]. 石油与天然气地质, 2005,26(1):2-8, 22. Jin Jiuqiang, Song Jianguo. Control of Plate Tectonics over Evolution of Petroliferous Basins and Characteristic of Oil and Gas Distribution in China[J]. Oil & Gas Geology, 2005,26(1):2-8, 22.
[16] 周肖贝, 李江海, 王洪浩, 等. 寒武纪全球板块构造与古地理环境再造[J]. 海相油气地质, 2014,19(2):1-7. Zhou Xiaobei, Li Jianghai, Wang Honghao, et al. Reconstruction of Cambrian Global Paleo-Plates and Paleogeography[J]. Marine Origin Petroleum Geology, 2014,19(2):1-7.
[17] 张静, 张宝民, 单秀琴. 古气候与古海洋对碳酸盐岩储集层发育的控制[J]. 石油勘探与开发, 2014,41(1):121-128. Zhang Jing, Zhang Baomin, Shan Xiuqin, et al. Controlling Effects of Paleo-Climate and Paleo-Ocean on Formation of Carbonate Reservoirs[J]. Petroleum Exploration and Development,2014, 41(1):121-128.
[18] 张水昌, 高志勇, 李建军, 等. 塔里木盆地寒武系—奥陶系海相烃源岩识别与分布预测[J]. 石油勘探与开发, 2012,39(3):285-294. Zhang Shuichang, Gao Zhiyong, Li Jianjun, et al. Identification and Distribution of Marine Hydrocarbon Source Rocks in the Ordovician and Cambrian of the Tarim Basin[J]. Petroleum Exploration and Development, 2012,39(3):285-294.
[19] 杨威, 魏国齐, 王清华, 等. 塔里木盆地寒武系两类优质烃源岩及其形成的含油气系统[J]. 石油与天然气地质, 2004,25(3):263-267. Yang Wei, Wei Guoqi, Wang Qinghua, et al. Two Types of Cambrian Source Rocks and Related Petroleum Systems in Tarim basin[J]. Oil & Gas Geology, 2004,25(3):263-267.
[20] Chari M N, Sahu J N, Banerjee B, et al. Evolution of the Cauvery Basin, India from Subsidence Modelling[J]. Marine and Petroleum Geology, 1995,12(6):667-675.
[21] Sircar A. Hydrocarbon Production from Fractured Basement Formations[J]. Current Science Bangalore, 2004,87:147-151.
[22] Ahlbrandt T S. The Sirte Basin Province of Libya: Sirte-Zelten Total Petroleum System[M]. Boston: US Department of the Interior, US Geological Survey, 2001.
[23] Barakat A O, Mostafa A, El-Gayar M S, et al. Source-Dependent Biomarker Properties of Five Crude Oils from the Gulf of Suez, Egypt[J]. Organic Geochemistry, 1997,26(7):441-450.
[24] Alsharhan A S, Salah M G. Geology and Hydro-carbon Gabitat in Rift Setting: Northern and Central Gulf of Suez, Egypt[J]. Bulletin of Canadian Petroleum Geology, 1995,43(2):156-176.
[25] Salah M G, Alsharhan A S. The Precambrian Basement: A Major Reservoir in the Rifted Basin, Gulf of Suez[J]. Journal of Petroleum Science and Engineering, 1998,19(3):201-222.
[26] 金强, 毛晶晶, 杜玉山, 等. 渤海湾盆地富台油田碳酸盐岩潜山裂缝充填机制[J]. 石油勘探与开发, 2015,42(4):454-462. Jin Qiang, Mao Jingjing, Du Yushan, et al. Fracture Filling Mechanisms in the Carbonate Buried-Hill of Futai Oilfield in Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2015,42(4):454-462.
[27] 邹华耀, 赵春明, 尹志军, 等. 渤海湾盆地新太古代结晶岩潜山裂缝发育的露头模型[J]. 天然气地球科学, 2013,24(5):879-885. Zou Huayao, Zhao Chunming, Yin Zhijun, et al. Fracture-Occurring Outcrop Model in Neoarchean Crystalline Rock-Buried Hill, Bohai Bay Basin, North China[J]. Natural Gas Geoscience, 2013,24(5):879-885.
[28] Pollastro R M. Ghaba Salt Basin Province and Fahud Salt Basin Province, Oman: Geological Overview and Total Petroleum Systems[M]. Wisconsin: US Department of the Interior, US Geological Survey, 1999.
[29] Sharland P R, Archer R, Casey D M, et al. Arabian Plate Sequence Stratigraphy[J]. GeoArabia, Journal of the Middle East Petroleum Geosciences, 2013,18(4):796-809.
[30] Gorin G E, Racz L G, Walter M R. Late Precambrian-Cambrian Sediments of Huqf Group, Sultanate of Oman[J]. AAPG Bulletin, 1982,66(12):2609-2627.
[31] Bowring S A, Grotzinger J P, Condon D J, et al. Geochronologic Constraints on the Chronostra-tigraphic Framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman[J]. American Journal of Science, 2007,307(10):1097-1145.
[32] Ramseyer K, Amthor J E, Spotl C, et al. Impact of Basin Evolution, Depositional Environment, Pore Water Evolution and Diagenesis on Reservoir-Quality of Lower Paleozoic Haima Supergroup Sandstones, Sultanate of Oman[J]. Geoarabia Manama, 2004,9:107-138.
[33] Oterdoom W H, Worthing M A, Partington M. Petrological and Tectonostratigraphic Evidence for a Mid Ordovician Rift Pulse on the Arabian Peninsula[J]. GeoArabia, 1999,4(4):467-500.
[34] Filbrandt J B, Al-Dhahab S, Al-Habsy A, et al. Kinematic Interpretation and Structural Evolution of North Oman, Block 6, Since the Late Cretaceous and Implications for Timing of Hydrocarbon Migration into Cretaceous Reservoirs[J]. GeoArabia, 2006,11(1):97-140.
[35] Grosjean E, Love G D, Stalvies C, et al. Origin of Petroleum in the Neoproterozoic-Cambrian South Oman Salt Basin[J]. Organic Geochemistry, 2009,40(1):87-110.
[36] Terken J, Frewin N L, Indrelid S L. Petroleum Systems of Oman: Charge Timing and Risks[J]. AAPG Bulletin, 2001,85(10):1817-1845.
[37] Millson J A, Quin J G, Idiz E, et al. The Khazzan Gas Accumulation, a Giant Combination Trap in the Cambrian Barik Sandstone Member, Sultanate of Oman: Implications for Cambrian Petroleum Systems and Reservoirs[J]. AAPG Bulletin, 2008,92(7):885-917.
[38] Amthor J E, Ramseyer K, Faulkner T, et al. Stratigraphy and Sedimentology of a Chert Reservoir at the Precambrian-Cambrian Boundary: The Al Shomou Silicilyte, South Oman Salt Basin[J]. GeoArabia, 2005,10(2):89-122.
[39] Alixant J, Frewin N, Nederlof P, et al. Charac-terisation of the Athel Silicilyte Source Rock/Reservoir: Petrophysics Meets Geochemistry[C]//SPWLA 39th Annual Logging Symposium. Houston:Society of Petrophysicists and Well-Log Analysts,1998.
[40] Shuster M W. The Ara and Haima Plays in Oman-Exploration for Oil and Gas in Terminal Neoproterozoic and Lower Paleozoic Reservoirs[C]// AAPG International Conference. Barcelona: AAPG Bulletin,2003.
[41] Heward A P. Salt Removal and Sedimentation in Southern Oman[J]. Geological Society, London, Special Publications, 1990,49(1):637-651.
[42] Looyestijn W J, Alixant J L, Hofman J P. Unusual Logs in an Unusual Formation: NMR in Athel Silicilyte[C]//European Petroleum Conference. Texas: Society of Petroleum Engineers,1998.
[43] Al-Shuraiqi H, van Engelen V. Gas Flooding a Tight and Heterogeneous Silicilite Reservoir-Quantification of Sweep Efficiency[C]//14th European Symposium on Improved Oil Recovery. Cairo: Petroleum Development Oman. 2007.
[44] Droste H H. Stratigraphy of the Lower Paleozoic Haima Supergroup of Oman[J]. GeoArabia, 1997,2(4):419-472.
[45] Ulmishek G F. Petroleum Geology and Resources of the Nepa-Botuoba High, Angara-Lena Terrace, and Cis-Patom Foredeep, Southeastern Siberian Craton, Russia[M]. Boston: US Department of the Interior, US Geological Survey, 2001.
[46] Meyerhoff A A. Geology and Petroleum Fields in Proterozoic and Lower Cambrian Strata, Lena-Tunguska Petroleum Province, Eastern Siberia, USSR[J]. Giant Oil and Gas Fields of the Decade 1968-1978, 1980,30(12):225-252.
[47] Kontorovich A E, Mandel Baum M M, Surkov V S, et al. Lena-Tunguska Upper Proterozoic-Palaeozoic Petroleum Superprovince[J]. Geological Society, London, Special Publications, 1990,50(1):473-489.
[48] Sutter A A, Dixon R J, Guryanov A V. Kovykti-nskoye Gas-Condensate Accumulation, Irkutsk Oblast, East Siberia, Russia[C]//Abstract, AAPG Annual Meeting.Denver:AAPG Bulletin, 2001.
[49] 史斗. 裂谷盆地和超大型油气田[J]. 天然气地球科学, 1993,14(6):116-118. Shi Dou. Rift Basins and Giant Oil and Gas Fields[J]. Natural Gas Geosciences, 1993,14(6):116-118.
[50] 张景廉, 王新民, 赵应成, 等. 深大断裂与大气田的关系[J]. 天然气地球科学, 1998,19(5):10-17. Zhang Jinglian, Wang Xinmin, Zhao Yingcheng, et al. The Relationship Between the Deep Fracture and Large Gas Fields[J]. Natural Gas Geosciences, 1998,19(5):10-17.
[51] 李晶, 孙婧, 陶明信. 全球油气探明储量与大油气田的分布及地质构造背景[J]. 天然气地球科学, 2012,23(2):259-267. Lijing, Sun Jing, Tao Mingxin. Correlation of Globally Proved Oil-Gas Reserves and Distribution of Giant Size Oil-gas Fields and Geotectonic Settings[J]. Natural Gas Geosciences, 2012,23(2):259-267.
[52] 丁寒生, 闫丽萍. 阿曼盆地侯格夫群地层演化及其对油气的控制[J]. 中国石油勘探,2013,18(4):74-80. Ding Hansheng, Yan Liping. Stratigraphic Evolution of Huqf Group and Its Control on Hydrocarbon Accumulation in Oman Basin[J]. China Petroleum Exploration, 2013,18(4):74-80.
[53] 杜金虎, 杨华, 徐春春, 等. 东西伯利亚地台碳酸盐岩成藏条件对我国油气勘探的启示[J]. 岩性油气藏, 2013,25(3):1-8. Du Jinhu, Yang Hua, Xu Chunchun, et al. Carbonate Reservoir Forming Conditions of East Siberia Platform and Its Inspiration to Oil and Gas Exploration in China[J]. Lithologic Reservoirs, 2013,25(3):1-8.
[54] 朱光有, 杨海军, 张斌, 等. 油气超长运移距离[J]. 岩石学报, 2013,29(9):3192-3212. Zhu Guangyou, Yang Haijun, Zhang Bin, et al. Ultra-Long Distance Migration of Hydrocarbon[J]. Acta Petrolei Sinica, 2013,29(9):3192-3212.
[55] Zhu Guangyou, Huang Haiping, Wang Huitong. Geochemical Significance of Discovery in Cambrian Reservoirs at Well ZS1 of the Tarim Basin, Northwest China[J]. Energy & Fuels, 2015, 29: 1332-1344.
[56] 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1):8-21. Zhu Guangyou, Chen Feiran, Chen Zhiyong, et al. Discovery and Basic Characteristics of the High-Quality Source Rocks of the Cambrian Yuertusi Formation in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(1):8-21.
[57] Zhu Guangyou, Zhang Shuichang, Liu Keyu, et al. A Well-Preserved 250 Million-Year-Old Oil Accumulation in the Tarim Basin, Western China: Implications for Hydrocarbon Exploration in Old and Deep Basins[J]. Marine and Petroleum Geology, 2013,43:478-488.
[58] Zhou X, Jia C, Wang Z, et al. Characteristics of Carbonate Gas Pool and Multistage Gas Pool Formation History of Hetianhe Gas Field, Tarim Basin, Northwest China[J]. Chinese Science Bulletin, 2002, 47(Sup.1):146-152.
[59] Zhu Guangyou, Zhang Baotao, Yang Haijun, et al. Origin of Deep Strata Gas of Tazhong in Tarim Basin, China[J]. Organic Geochemistry,2014,74: 85-97.
[1] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[2] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[3] 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古-中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555.
[4] 刘丽红, 杜小弟, 徐守礼, 文华国. 四川盆地中南部寒武系白云岩特征及形成机制[J]. 吉林大学学报(地球科学版), 2017, 47(3): 775-784.
[5] 牛君, 黄文辉, 丁文龙, 蒋文龙, 张亚美, 漆立新, 云露, 吕海涛. 麦盖提斜坡奥陶系碳酸盐岩碳氧同位素特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 61-73.
[6] 杜治利, 曾昌民, 邱海峻, 杨有星, 张亮. 塔西南叶城凹陷二叠系两套烃源岩特征及柯东1井油源分析[J]. 吉林大学学报(地球科学版), 2016, 46(3): 651-660.
[7] 薛海涛, 田善思, 卢双舫, 刘敏, 王伟明, 王民. 分散可溶有机质的气源意义[J]. 吉林大学学报(地球科学版), 2015, 45(1): 52-60.
[8] 汤良杰,邱海峻,云露,杨勇,谢大庆,李萌,蒋华山. 塔里木盆地多期改造-晚期定型复合构造与油气战略选区[J]. 吉林大学学报(地球科学版), 2014, 44(1): 1-14.
[9] 周波,邱海峻, 段书府,李启明,邬光辉. 塔中Ⅰ号断裂坡折带上奥陶统碳酸盐岩储层微观孔隙成因[J]. 吉林大学学报(地球科学版), 2013, 43(2): 351-359.
[10] 王小敏,陈昭年,樊太亮,余腾孝,曹自成,何海. 巴麦地区晚石炭世碳酸盐岩台内滩储层综合评价[J]. 吉林大学学报(地球科学版), 2013, 43(2): 371-381.
[11] 高志前, 樊太亮, 杨伟红, 王鑫. 塔里木盆地下古生界碳酸盐岩台缘结构特征及其演化[J]. J4, 2012, 42(3): 657-665.
[12] 郭倩, 蒲仁海. 塔里木盆地巴麦地区石炭系低速异常碳酸盐岩的解释[J]. J4, 2011, 41(3): 689-696.
[13] 张运波, 赵宗举, 袁圣强, 郑民. 频谱分析法在识别米兰科维奇旋回及高频层序中的应用——以塔里木盆地塔中-巴楚地区下奥陶统鹰山组为例[J]. J4, 2011, 41(2): 400-410.
[14] 孙林华. 塔里木盆地瓦吉里塔格超镁铁岩地球化学反演[J]. J4, 2010, 40(6): 1301-1310.
[15] 孔庆莹, 程日辉. 塔里木盆地孔雀河地区寒武系-下奥陶统沉积特征[J]. J4, 2010, 40(3): 527-534.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!