吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (4): 1219-1228.doi: 10.13278/j.cnki.jjuese.201704202

• 地质工程与环境工程 • 上一篇    下一篇

水箱-管道系统溶质运移实验研究及其岩溶水文地质意义

赵小二, 常勇, 彭伏, 吴吉春   

  1. 南京大学地球科学与工程学院, 南京 210023
  • 收稿日期:2016-11-01 出版日期:2017-07-26 发布日期:2017-07-26
  • 通讯作者: 常勇(1987),男,博士,主要从事岩溶水文地质研究,E-mail:wwwkr@163.com E-mail:wwwkr@163.com
  • 作者简介:赵小二(1989),男,博士研究生,主要从事岩溶地区溶质运移研究,E-mail:zxe7866321@126.com
  • 基金资助:
    国家自然科学基金项目(U1503282,41602242)

Experimental Study of Solute Transport in Pool-Pipe System and Its Significance on Karst Hydrogeology

Zhao Xiaoer, Chang Yong, Peng Fu, Wu Jichun   

  1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
  • Received:2016-11-01 Online:2017-07-26 Published:2017-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China(U1503282,41602242)

摘要: 为了研究岩溶管道中溶潭对溶质运移的影响,在实验室内构建水箱-管道系统,在不同管道结构和水流条件下进行定量示踪实验并得到相应的穿透曲线(BTCs);采用Qtracer2软件分析溶质运移参数,采用滞后系数R分析实验结果与一维经典对流弥散方程解析解之间的差别。实验结果显示:随着水箱数量的增加,示踪剂(NaCl)峰值质量浓度逐渐降低,弥散系数和弥散度逐渐增加,穿透曲线拖尾逐渐增长,表明水箱的瞬态存储使溶质运移滞后;与不对称水箱相比,对称水箱BTC拖尾较长;峰现时间随着不对称水箱数量的增多明显滞后;出口流量增加时,弥散度减小,BTC拖尾变短。一维经典对流弥散方程解析解仅对单管道最大流量条件下的BTC拟合较好,对流量较小的单管道和水箱-管道系统的BTC拟合较差,需研究适用的模型解释其拖尾现象。

关键词: 岩溶管道, 水箱-管道系统, 溶质运移, 管道结构, 水流条件

Abstract: In order to investigate the effect of pools on solute transport in the conduit, a pool-pipe system was built in the laboratory and the breakthrough curves (BTCs) were generated through quantitative tracer tests under different conditions. The Qtracer2 program was used to obtain solute transport parameters. We use retardation coefficient R to characterize the difference between the 1-D analytical solution of classical advection-dispersion equation and the experimental results. The experimental results reveal that the peak concentration decreases with more pools in series whereas the dispersion and the dispersivity increase gradually. Adding transient storage increases retardation as tailing of the BTC grows with more pools. This demonstrates that transient storage within pools is transformed to retardation. The symmetrical pool has longer tails compared to the asymmetrical pool. The peak concentration lags behind significantly due to the asymmetrical pools. As the flow rate increases, the amount of tailing and the dispersivity decrease in any case. The 1-D analytical solution of classical advection-dispersion equation can fit BTC of the single pipe in maximum discharge well but cannot fit other BTCs with appreciable tails. Therefore, it requires an appropriate model to explain the tailing of BTC.

Key words: karst conduit, pool-pipe system, solute transport, pipe structures, flow conditions

中图分类号: 

  • P641.69
[1] Dewaide L, Bonniver I, Rochez G, et al. Solute Transport in Heterogeneous Karst Systems: Dimensioning and Estimation of the Transport Parameters via Multi-Sampling Tracer-Tests Modelling Using the OTIS (One-Dimensional Transport with Inflow and Storage) Program[J]. Journal of Hydrology, 2016, 534: 567-578.
[2] Martin J L, McCutcheon S C. Hydrodynamics and Transport for Water Quality Modeling[M]. Florida: CRC Press, 1998.
[3] 何师意, 章程, 汪进良, 等. 高精度地下水示踪技术及其应用:以毛村地下河流域为例[J]. 地球学报, 2009 (5): 673-678. He Shiyi, Zhang Cheng, Wang Jinliang, et al. A High Precision Underground Water Tracing Test Technique and Its Applications: A Case Study in Maocun Karst System, Guilin, Guangxi[J]. Acta Geoscientica Sinica, 2009, 30(5): 673-678.
[4] 易连兴, 夏日元, 唐建生, 等. 地下水连通介质结构分析:以寨底地下河系统实验基地示踪试验为例[J]. 工程勘察, 2010, 38(11): 38-41. Yi Lianxing, Xia Riyuan, Tang Jiansheng, et al. Analysis on the Connecting Medium Structure of Groundwater: Taking the Tracer Tests in the Experiment Base of Zhaidi Ground-River System as an Example[J]. Geotechnical Investigation and Surveying, 2010, 38(11): 38-41.
[5] Hauns M, Jeannin P Y, Atteia O. Dispersion, Retardation and Scale Effect in Tracer Breakthrough Curves in Karst Conduits[J]. Journal of hydrology, 2001, 241(3): 177-193.
[6] 束龙仓, 范建辉, 鲁程鹏, 等. 裂隙-管道介质泉流域水文地质模拟试验[J]. 吉林大学学报(地球科学版), 2015, 45(3): 908-917. Shu Longcang, Fan Jianhui, Lu Chengpeng, et al. Hydrogeological Simulation Test of Fissure-Conduit Media in Springs Watershed[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3):908-917.
[7] 陈崇希. 岩溶管道一裂隙一孔隙三重空隙介质地下水流模型及模拟方法研究[J]. 地球科学:中国地质大学学报, 1995, 20(4): 361-366. Chen Chongxi.Groundwater Flow Model and Simulation Method in Triple Media of Karstic Tube-Fissure-Pore[J]. Earth Science: Journal of China University of Geosciences, 1995, 20(4): 361-366.
[8] Massei N, Wang H Q, Field M S, et al. Interpreting Tracer Breakthrough Tailing in a Conduit-Dominated Karstic Aquifer[J]. Hydrogeology Journal, 2006, 14(6): 849-858.
[9] Field M S. The QTRACER2 Program for Tracer-Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other Hydrologic Systems[M]. Washington: US Environmental Protection Agency, 2002.
[10] Field M S, Nash S G. Risk Assessment Methodology for Karst Aquifers: (1): Estimating Karst Conduit-Flow Parameters[J]. Environmental Monitoring and Assessment, 1997, 47(1): 1-21.
[11] Field M S. Risk Assessment Methodology for Karst Aquifers: (2): Solute-Transport Modeling[J]. Environmental Monitoring and Assessment, 1997, 47(1): 23-37.
[12] Chatwin P C. On the Interpretation of Some Longitudinal Dispersion Experiments[J]. Journal of Fluid Mechanics, 1971, 48(4): 689-702.
[13] 陈余道, 程亚平, 王恒, 等. 岩溶地下河管道流和管道结构及参数的定量示踪:以桂林寨底地下河为例[J]. 水文地质工程地质, 2013, 40(5): 11-15. Chen Yudao, Cheng Yaping, Wang Heng, et al. Quantitative Tracing Study of Hydraulic and Geometric Parameters of a Karst Underground River: Exemplified by the Zhaidi Underground River in Guilin[J]. Hydrogeology and Engineering Geology, 2013, 40(5): 11-15.
[14] Field M S, Pinsky P F. A Two-Region Nonequili-brium Model for Solute Transport in Solution Conduits in Karstic Aquifers[J]. Journal of Contaminant Hydrology, 2000, 44(3): 329-351.
[15] Field M S. Efficient Hydrologic Tracer-Test Design for Tracer-Mass Estimation and Sample-Collection Frequency:1:Method Development[J]. Environmental Geology, 2002, 42(7): 827-838.
[16] Mull D S, Liebermann T D, Smoot J L, et al. Application of Dye-Tracing Techniques for Determining Solute-Transport Characteristics of Ground Water in Karst Terranes[R]. Atlanta: Environmental Protection Agency: Region IV, 1988.
[17] Morales T, Uriarte J A, Olazar M, et al. Solute Transport Modeling in Karst Conduits with Slow Zones During Different Hydrologic Conditions[J]. Journal of Hydrology, 2010, 390(3): 182-189.
[18] Göppert N, Goldscheider N. Solute and Colloid Transport in Karst Conduits under Low-and High-Flow Conditions[J]. Ground Water, 2008, 46(1): 61-68.
[1] 刘波, 王明玉, 张敏, 李玮. 裂隙网络管道模型弥散试验[J]. 吉林大学学报(地球科学版), 2016, 46(1): 230-239.
[2] 杜超, 肖长来, 吕军, 田浩然. 地下水水质实时预报系统开发及应用:以下辽河平原为例[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1625-1632.
[3] 许天福, 金光荣, 岳高凡, 雷宏武, 王福刚. 地下多组分反应溶质运移数值模拟:地质资源和环境研究的新方法[J]. J4, 2012, 42(5): 1410-1425.
[4] 王金生,滕彦国,吴东杰. 不流动水与非平衡吸附作用对溶质运移影响的数值模型-MIENESOR[J]. J4, 2007, 37(2): 266-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!