吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (5): 1398-1404.doi: 10.13278/j.cnki.jjuese.20180138

• 地质工程与环境工程 • 上一篇    下一篇

虹吸水流作用下的土柱运动特性及虹吸管道防淤堵措施

吴纲1, 谢威2, 严鑫1, 翁杨1, 孙红月1   

  1. 1. 浙江大学海洋学院, 浙江 舟山 316021;
    2. 浙江大学建筑工程学院, 杭州 310058
  • 收稿日期:2018-05-30 发布日期:2019-10-10
  • 通讯作者: 孙红月(1970-),女,教授,博士,主要从事岩土工程和地质工程等领域的研究,E-mail:shy@zju.edu.cn E-mail:shy@zju.edu.cn
  • 作者简介:吴纲(1990-),男,博士研究生,主要从事软基处理方面的研究,E-mail:11534020@zju.edu.cn
  • 基金资助:
    浙江省重点研发计划项目(2017C03006)

Motion Characteristics of Clay Column Under Action of Siphon Flow and Anti-Clogging Measures

Wu Gang1, Xie Wei2, Yan Xin1, Weng Yang1, Sun Hongyue1   

  1. 1. Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China;
    2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
  • Received:2018-05-30 Published:2019-10-10
  • Supported by:
    Supported by Key Research and Development Plan of Zhejiang Province (2017C03006)

摘要: 虹吸排水联合堆载固结技术是软基处理中的一项新技术,在应用该技术时,虹吸管内土柱的淤堵问题是制约该技术发展的核心问题之一。针对虹吸管内土柱的淤堵问题,采用颗粒沉降模型和水动力学相关理论,推导得到了土柱在虹吸水流作用下的临界高度表达式。根据所推求的表达式,可以制定相应的防淤堵措施,使得虹吸排水能够顺利进行。研究结果表明:土柱容易在虹吸管弯曲圆弧段形成淤堵;对于工程现场最常见的4 mm内径虹吸管,当虹吸管弯曲圆弧段半径大于40 cm或者虹吸管内土柱高度大于4 cm时,就有可能产生淤堵;实际工程中,可以采用减小虹吸管弯曲圆弧段半径、降低虹吸管出水口高度以及减小虹吸管长度的措施减小淤堵的可能,从而保证虹吸过程的持续进行。

关键词: 虹吸, 运动特性, 土柱, 淤堵

Abstract: Siphon drainage combined with surcharge loading is a new technology for soft ground improvement,in which the clogging issue of soil column in siphon flow is critical. The results show that the clay column is prone to form a blockage in the curved section of the siphon tube. Siphon tubes with inner diameter of 4 mm are widely used in field engineering. When the radius of the curved section is greater than 40 cm and the height of the clay column is greater than 4 cm, the clay column will clog in the siphon tube. Aiming at the clogging problem,the critical height solution of clay column under siphon flow is derived by using the particle subsidence model and corresponding hydrodynamic theory. According to the above solution, the anti-clogging measures are proposed to guarantee the siphon drainage operate smoothly. In practice, the siphon drainage process can be maintained by reducing the radius of curved sections, the length of siphon tubes, and the height of siphon outlets.

Key words: siphon, motion characteristic, clay column, clogging

中图分类号: 

  • TU447
[1] 龚晓南. 地基处理手册[M]. 北京:中国建筑工业出版社,2008:69-162. Gong Xiaonan. Handbook for Foundation Treatment[M]. Beijing:China Architecture & Building Press,2008:69-162.
[2] Shang J Q,Mohamedelhassan E,Ismail M. Electrochemical Cementation of Offshore Calcareous Soil[J]. Canadian Geotechnical Journal,2004,41(5):877-893.
[3] Yan S W,Chu J. Soil Improvement for a Storage Yard Using the Combined Vacuum and Fill Preloading Method[J]. Canadian Geotechnical Journal,2005,42(4):1094-1104.
[4] 雷学文,白世伟,孟庆山. 动力排水固结法的加固机理及工艺特征[J]. 岩土力学,2004,25(4):637-639. Lei Xuewen,Bai Shiwei,Meng Qingshan. Mechanism and Technology Characteristics of Dynamic Consolidation by Drainage[J]. Rock and Soil Mechanics,2004,25(4):637-639.
[5] Cai Y,Sun H,Shang Y,et al. An Investigation of Flow Characteristics in Slope Siphon Drains[J]. Journal of Zhejiang University:Series A:Applied Physics & Engineering,2014,15(1):22-30.
[6] Cai Y,Sun H,Shang Y,et al. Air Accumulation in High-Lift Siphon Hoses Under the Influence of Air Dissolution and Diffusion[J]. Journal of Zhejiang University:Series A:Applied Physics & Engineering,2015,16(9):760-768.
[7] Mei C,Liang X,Sun H,et al. High-Lift Siphon Flow Velocity in a 4-mm Siphon Hose[J]. Journal of Zhejiang University:Series A:Applied Physics & Engineering, 2017,18(6):487-495.
[8] 任姗姗,尚岳全,何婷婷,等. 边坡虹吸排水数值模拟方法及应用[J]. 岩石力学与工程学报,2013,32(10):2022-2027. Ren Shanshan,Shang Yuequan,He Tingting,et al. Numerical Simulation Method for Siphonic Drainage in Slope and Its Application[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(10):2022-2027.
[9] 孙红月,熊晓亮,尚岳全,等. 边坡虹吸排水管内空气积累原因及应对措施[J]. 吉林大学学报(地球科学版),2014,44(1):278-284. Sun Hongyue,Xiong Xiaoliang,Shang Yuequan,et al. Pipe Air Accumulation Causes and Its Control Method in Slope Siphon Drainage[J]. Journal of Jilin University (Earth Science Edition),2014,44(1):278-284.
[10] 熊晓亮,孙红月,张世华,等. 高扬程虹吸保障条件分析与合理管径选择数值模拟[J]. 吉林大学学报(地球科学版),2014,44(5):1595-1601. Xiong Xiaoliang,Sun Hongyue,Zhang Shihua,et al. Analysis of Condition of Ensuring High-Lift Siphon Drainage and Numerical Simulation of Choice of Optimum Diameter[J]. Journal of Jilin University (Earth Science Edition),2014,44(5):1595-1601.
[11] 张世华,孙红月,熊晓亮,等. 基于matlab的边坡虹吸排水渗流场分析[J]. 公路工程,2014,39(5):25-30. Zhang Shihua,Sun Hongyue,Xiong Xiaoliang,et al. Analysis of Slope Seepage Under Siphon Drainage Based on Matlab Method[J]. Highway Engineering,2014,39(5):25-30.
[12] Sun H,Wu G,Liang X,et al. Laboratory Modeling of Siphon Drainage Combined with Surcharge Loading Consolidation for Soft Ground Treatment[J]. Marine Georesources & Geotechnology,2017:36(8):940-949.
[13] 邓岳保. 竖井地基固结解析理论与有限元分析[D]. 杭州:浙江大学,2013. Deng Yuebao. Analytical Theory and Finite Element Analysis for Consolidation of Soft Soils by Vertical Drains[D]. Hangzhou:Zhejiang University,2013.
[14] 夏泰淳. 工程流体力学[M]. 上海:上海交通大学出版社,2006:78-99. Xia Taichun. Engineering Fluid Mechanics[M]. Shanghai:Shanghai Jiaotong Press,2006:78-99.
[15] 陈敏恒,丛德滋,方图南,等. 化工原理[M]. 北京:化学工业出版社,2006:143-149. Chen Minheng,Cong Dezi,Fang Tunan,et al. Principles of Chemical Engineering[M]. Beijing:Chemical Industry Press,2006:143-149.
[16] 吴宁,张琪,曲占庆. 固体颗粒在液体中沉降速度的计算方法评述[J]. 石油钻采工艺,2000,22(2):51-53. Wu Ning,Zhang Qi,Qu Zhanqing. Evaluation on Calculation Methods of Solid Particle Settling Velocity in Fluid[J]. Oil Drilling & Production Technology, 2000,22(2):51-53.
[17] 刘中良,施明恒,戴锅生. 固体颗粒在竖直向上管内流场中的运动规律[J]. 石油大学学报(自然科学版),1998,22(4):82-86. Liu Zhongliang,Shi Mingheng,Dai Guosheng. Numerical Simulation of Motion of a Solid Particle Up-Flowing Vertically at the Liquid Flow Field Inside the Tube[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1998,22(4):82-86.
[18] 夏建新,倪晋仁,黄家桢. 锰结核在垂直管路输送过程中的压力损失[J]. 泥沙研究,2002(2):23-28. Xia Jianxin,Ni Jinren,Huang Jiazhen. Pressure Loss in Solid-Liquid Flow with Coarse Manganese Nodules in Vertical Pipeline[J]. Journal of Sediment Research, 2002(2):23-28.
[1] 雷华阳, 王铁英, 张志鹏, 卢海滨, 刘敏. 高黏性新近吹填淤泥真空预压试验颗粒流宏微观分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1784-1794.
[2] 熊晓亮,孙红月,张世华,蔡岳良. 高扬程虹吸保障条件分析与合理管径选择数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1595-1601.
[3] 孙红月,熊晓亮,尚岳全,蔡岳良. 边坡虹吸排水管内空气积累原因及应对措施[J]. 吉林大学学报(地球科学版), 2014, 44(1): 278-284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘兆顺,尚金城,许文良,靳 克. 吉林省东部资源型县域经济与生态环境协调发展分析--以汪清县为例[J]. J4, 2006, 36(02): 265 -0269 .
[2] V.P.Onischin,陈 晨,赵秉成,朱 英. 新式整体不提钻切削具可换式钻头[J]. J4, 2006, 36(02): 309 -0312 .
[3] 付广,王有功,苏玉平. 古龙凹陷青山口组超压源岩天然气扩散速度演化史[J]. J4, 2007, 37(1): 91 -0097 .
[4] 刘正宏,徐仲元,杨振升,陈晓峰. 变质构造岩类型及其特征[J]. J4, 2007, 37(1): 24 -0030 .
[5] 谭惠,李殿超,杨殿范, 王瑛玮. 掺铁-TiO2/膨润土复合光催化材料制备及性能[J]. J4, 2007, 37(1): 204 -0208 .
[6] 杨双玲,刘万洙,于世泉,王国军,黄玉龙. 松辽盆地火山岩储层储集空间特征及其成因[J]. J4, 2007, 37(3): 506 -0512 .
[7] 曹剑峰,王凯军,姜纪沂,冶雪艳. 黄河下游断流对沿岸地下水形成与开发的影响[J]. J4, 2007, 37(5): 937 -0942 .
[8] 车茜,陈剑平,阙金声. 基于粗糙集的可拓评判权值确定[J]. J4, 2008, 38(2): 268 -0272 .
[9] 高彦伟,董德明,陈殿友,张岩坤,韩晓华. 时域克里格方法在地表水水质预测中的应用[J]. J4, 2008, 38(3): 444 -0447 .
[10] 叶栋成,慕山, 陶月赞. 地下水补给对河流水质模型的影响[J]. J4, 2008, 38(4): 644 -0648 .