吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (6): 1865-1875.doi: 10.13278/j.cnki.jjuese.20180161

• 地球探测与信息技术 • 上一篇    

岩浆泡破裂引发地震的模式——以吉林松原2013年地震群为例

薛林福1, 祝铭1, 李文庆1, 刘文玉2, 刘正宏1, 刘泽宇1   

  1. 1. 吉林大学地球科学学院, 130061 长春;
    2. 中国地质调查局武汉地质调查中心, 430205 武汉
  • 收稿日期:2018-06-22 发布日期:2018-11-26
  • 作者简介:薛林福(1962-),男,教授,博士生导师,主要从事三维地质建模与可视化研究,E-mail:190780877@qq.com
  • 基金资助:
    国家地质调查局项目(1212011220247)

Earthquake Triggered by “Magma Bubble” Bursting: 2013 Songyuan Earthquake Cluaters in Jilin as an Example

Xue Linfu1, Zhu Ming1, Li Wenqing1, Liu Wenyu2, Liu Zhenghong1, Liu Zeyu1   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Wuhan Geological Survey Center, China Geological Survey, Wuhan 430205, China
  • Received:2018-06-22 Published:2018-11-26
  • Supported by:
    Supported by China Geological Survey (1212011220247)

摘要: 2013年10月31日,吉林省松原前郭尔罗斯蒙古族自治县(44.60°N,124.18°E)发生震级为5.5级地震,此后的40 d内发生了700多次地震,其中5级以上地震5次。松原地区近年来地震活动频繁,2014年1月以来又发生4级以上地震9次、5级以上地震1次,震中处于松辽盆地油气田开采区,地震活动序列十分特殊。为了揭示松原地震的发震机制与发震模式,研究深部地质过程与地震的关系,根据此次实测的通过震中25 km长的大地电磁测深剖面,结合地热梯度、He同位素比值(3He/4He)、CO2碳同位素、地震序列等资料的综合分析,发现震中地区存在两个位于不同深度的低阻体,地震发生与地幔深部岩浆活动有关;据此提出了一种新的地震发生模式——岩浆泡破裂发震模式,描述了来自地幔的基性岩浆通过向上侵入、在脆-韧性转换带附近聚集形成岩浆泡、岩浆泡破裂及岩浆泡上覆岩层中聚集能量引发岩层破裂产生地震的过程,并使来自地幔的无机成因的CO2气在储层中形成CO2气藏。该模式可以解释许多发生在大陆内部地震和深源地震的发生机制。

关键词: 发震模式, 岩浆泡破裂, 幔源CO2气, 大地电磁测深, 松原

Abstract: An unusual M 5.5 earthquake occurred on October 31st, 2013 in Songyuan City(44.60°N, 124.18°E),Northeastern China, and about 700 shocks were recorded in the following 40 days (5 times earthquakes above M 5.0). In the Songyuan area, earthquake activities have been frequent in recent years. Since January 2014, there have been nine times earthquakes with magnitude above 4.0 and one time with magnitude above 5.0. The epicenter is located in the oil-gas exploration area of Songliao basin, and the seismic sequence is very special. In order to reveal the earthquake mechanism, earthquake model and the relationship between deep geological processes and earthquakes, the magnetotelluric (MT) depth sounder was used to record a NW-SE 25-km-long profile with 23 MT survey points across the epicenter. On the basis of the MT profile, geothermal gradient, gas-phase hydrocarbons yield, 3He/4He ratio, carbon isotope analyses of CO2 gas and the seismic sequence, two low-resistance bodies were recognized at different depths in the epicentral area. The earthquakes are related to the deep mantle magmatism. We propose a new model that the earthquakes are triggered by "magma bubble" bursting. A "magma bubble" is a magma body formed by gradual accumulation of melts at a certain depth below the surface and rises at a certain speed. Magma gathers into magma bubble near the brittle-ductile transition zone. The energy stores in the magma-bubbles, and the strain energy stores in the overlying strata. Earthquakes occur as a result of the sudden energy release from the magma bubble bursting and the consequent overlying strata fracturing. Deep reservoirs of mantle-derived CO2 can be formed as a result of such long-term seismic activity. This model can explain the occurrence mechanism of many intraplate and deep-seated earthquakes.

Key words: earthquake triggering model, “magma-bubble” bursting, mantle-derived CO2, magnetotelluric sounding, Songyuan

中图分类号: 

  • P631.4
[1] Plafker G. Tectonic Deformation Associated with the 1964 Alaska Earthquake:The Earthquake of 27 March 1964 Resulted in Observable Crustal Deformation of Unprecedented Areal Extent[J]. Science, 1965, 148:1675.
[2] Ando M. Source Mechanisms and Tectonic Significance of Historical Earthquakes Along the Nankai Trough, Japan[J]. Tectonophysics, 1975, 27(2):119-140.
[3] Sigurdsson H, Sparks S R J. Lateral Magma Flow Within Rifted Icelandic Crust[J]. Nature, 1978, 274:126-130.
[4] Einarsson P. Earthquakes and Present-Day Tectonism in Iceland[J]. Tectonophysics, 1991, 189(1/2/3/4):261-279.
[5] Hasegawa A, Zhao D, Hori S, et al. Deep Structure of the Northeastern Japan Arc and Its Relationship to Seismic and Volcanic Activity[J]. Nature, 1991, 352:683-689.
[6] Chouet B A. Long-Period Volcano Seismicity:Its Source and Use in Eruption Forecasting[J]. Nature, 1996, 380:309-316.
[7] Walter T R,Amelung F. Volcano-Earthquake Interac-tion at Mauna Loa Volcano, Hawaii[J]. Journal of Geophysical Research Atmospheres, 2006, 111(B5):1-9.
[8] Soosalu H, Key J, White R S, et al. Lower-Crustal Earthquakes Caused by Magma Movement Beneath Askja Volcano on the North Iceland Rift[J]. Bulletin of Volcanology, 2010, 72:55-62.
[9] Sugisaki R. Deep-Seated Gas Emission Induced by the Earth Tide:A Basic Observation for Geochemical Earthquake Prediction[J]. Science, 1981, 212:1264-1266.
[10] 陈顺云,刘培洵,刘力强,等.芦山地震前康定地温变化现象[J].地震地质, 2013,35(3):634-640. Chen Shunyun, Liu Peixun, Liu Liqiang, et al. A Phenomenon of Ground Temperature Change Prior to Lushan Earthquake Observed in Kangding[J]. Seimology and Geology, 2013, 35(3):634-640.
[11] 邓起东,王挺梅,李建国,等.关于海城地震震源模式的讨论[J].地质科学, 1976(3):3-12. Deng Qidong, Wang Tingmei, Li Jianguo, et al. A Discussion on Source Model of Haicheng Earthquake[J]. Scientia Geological Sinica, 1976(3):3-12.
[12] 虢顺民,李志义,程绍平,等.唐山地震区域构造背景和发震模式的讨论[J]. 地质科学, 1977,12(4):305-321. Guo Shunmin, Li Zhiyi, Cheng Shaoping, et al. Discussion on the Regional Structural Background and the Seismogenic Model of the Tangshan Earthquake[J]. Scientia Geologica Sinica, 1977, 12(4):305-321.
[13] Prejean S, Stork A, Ellsworth W, et al. High Pre-cision Earthquake Locations Reveal Seismogenic Structure beneath Mammoth Mountain, California[J]. Geophysical Research Letters, 2003, 30:285-295.
[14] Ebinger C J, Keir D, Ayele A, et al. Capturing Mag-ma Intrusion and Faulting Processes During Continental Rupture:Seismicity of the Dabbahu (Afar) Rift[J]. Geophysical Journal International, 2008, 174:1138-1152.
[15] Seht I V, Plenefisch T, Klinge K. Earthquake Swarms in Continental Rifts:A Comparison of Selected Cases in America, Africa and Europe[J]. Tectonophysics, 2008, 452:66-77.
[16] Zhao D P, Yu S,Ohtani E. East Asia:Seismotecto-nics, Magmatism and Mantle Dynamics[J]. Journal of Asian Earth Sciences, 2011, 40:689-709.
[17] Hussein M, Velasco AA, Serpa L, et al. The Role of Fluids in Promoting Seismic Activity in Active Spreading Centers of the Salton Trough, California, USA[J]. International Journal of Geosciences, 2012, 3:303-313.
[18] Nobile A,Pagli C, Keir D, et al. Dike-Fault Interac-tion During the 2004 Dallol Intrusion at the Northern Edge of the Erta Ale Ridge (Afar, Ethiopia)[J]. Geophysical Research Letters, 2012, 39:19305.
[19] Feigl K L, Jérôme G,Freysteinn S, et al. Crustal Deformation near Hengill Volcano, Iceland 1993-1998:Coupling Between Magmatic Activity and Faulting Inferred from Elastic Modeling of Satellite Radar Interferograms[J]. Journal of Geophysical Research Atmospheres, 2000, 105:25655-25670.
[20] Wright T J,Ebinger C, Biggs J, et al. Magma-Maintained Rift Segmentation at Continental Rupture in the 2005 Afar Dyking Episode[J]. Nature, 2006, 442:291-294.
[21] Pagli C, Sigmundsson F, Pedersen R, et al. Crustal Deformation Associated with the 1996 Gjálp Subglacial Eruption, Iceland:Insar Studies in Affected Areas Adjacent to the Vatnajökull Ice Cap[J]. Earth & Planetary Science Letters, 2007, 259:24-33.
[22] Calais E,D'Oreye N, Albaric J, et al. Strain Acco-mmodation by Slow Slip and Dyking in a Youthful Continental Rift, East Africa[J]. Nature, 2008, 456:783-788.
[23] Grandin R,Socquet A, Binet R, et al. September 2005 Manda Hararo-Dabbahu Rifting Event, Afar (Ethiopia):Constraints Provided by Geodetic Data[J]. Journal of Geophysical Research Atmospheres, 2009, 114:1621-1643.
[24] Hamling I J, Ayele A, Bennati L, et al. Geodetic Observations of the Ongoing Dabbahu Rifting Episode:New Dyke Intrusions in 2006 and 2007[J]. Geophysical Journal International, 2009, 178:989-1003.
[25] Pallister J S,Mccausland W A, Jónsson S, et al. Broad Accommodation of Rift-Related Extension Recorded by Dyke Intrusion in Saudi Arabia[J]. Nature Geoscience, 2010, 3:705-712.
[26] Hilton D R. The Leaking Mantle[J]. Science, 2007, 318:1389-1390.
[27] Bräuer K, Kämpf H, Strauch G. Earthquake Swarms in Non-Volcanic Regions:What Fluids Have to Say[J]. Geophysical Research Letters, 2009, 36:1397-1413.
[28] 米敬奎,张水昌,陶士振,等.松辽盆地南部长岭断陷CO2成因与成藏期研究[J]. 天然气地球科学,2008,19(4):452-456. Mi Jingkui, Zhang Shuichang, Tao Shizhen, et al. Genesis and Accumulation Period of the CO2 in Changling Fault Depression of Songliao Basin, Northeastern China[J]. Natural Gas Geoscience, 2008, 19(4):452-456.
[29] 吴聿元,昝灵,黄军平,等.松辽盆地长岭断陷老英台-达尔罕凸起CO2分布特征及成因分析[J]. 石油实验地质, 2009,31(3):237-243. Wu Yuyuan, Zan Ling, Huang Junping, et al. Distribution Characteristics and Genesis of CO2 in the Laoyingtai-Daerhan Uplift, the Changling Fault Sag, the Songliao Basin[J]. Petroleum Geology & Experiment, 2009, 31(3):237-243.
[30] 栾海波,林景晔,夏丹,等.松辽盆地长岭断陷CO2气藏形成及分布规律[J]. 大庆石油地质与开发,2010,29(3):7-11. Luan Haibo, Lin Jinye, Xia Dan, et al. Carbon-Dioxide Gas Reservoir Formation and Distribution Laws in Changling Fault Depression of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2010, 29(3):7-11.
[31] Chave A D, Thomson D J, Ander M E. On the Robust Estimation of Power Spectra, Coherences, and Transfer Functions[J]. Journal of Geophysical Research Atmospheres, 1987, 92:633-648.
[32] 张庆春,胡素云,王立武,等.松辽盆地含CO2火山岩气藏的形成和分布[J]. 岩石学报, 2010,26(1):109-120. Zhang Qingchun, Hu Suyun, Wang Liwu, et al. Formation and Distribution of Volcanic CO2 Gas Pools in Songliao Basin[J]. Acta Petrological Sinica, 2010, 26(1):109-120.
[33] 周卓明,湛小红,李贶.长岭断陷无机成因天然气的判别与分布特征[J]. 石油天然气学报, 2012,34(4):31-35. Zhou Zhuoming, Zhan Xiaohong, Li Kuang. Discrimination and Distribution Characteristics of Inorganic Natural Gas in Changling Fault Depression[J]. Journal of Oil & Gas Technology, 2012, 34(4):31-35.
[34] 王杰,刘文汇,秦建中,等.中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007,18(1):19-26. Wang Jie, Liu Wenhui, Qin Jianzhong, et al. Mantle-Derived Gas Reservoir and Its Forming Rules in Eastern China[J]. Natural Gas Geoscience, 2007, 18:(1) 19-26.
[35] 邵济安,赵谊,张福松.黑龙江中西部地球排气与地震活动的探讨[J]. 岩石学报,2010,26(12),3651-3656. Shao Ji'an, Zhao Yi, Zhang Fusong, et al. Discussions on Earth Degassing and Seismic Activities in Central West Heilongjiang Province[J]. Acta Petrologica Sinica. 2010, 26(12):3651-3656.
[36] 王清海,许文良.松辽盆地形成与演化的深部作用过程:中生代火山岩探针[J]. 吉林大学学报(地球科学版), 2003,33(1):37-42. Wang Qinghai, Xu Wenliang. The Deep Process of Formation and Evolution of Songliao Basin:Mesozoic Volcanic Rock Probe[J]. Journal of Jilin University (Earth Science Edition), 2003, 33(1):37-42.
[37] 鄢挺骅.本世纪以来塔里木盆地和准噶尔盆地周缘强震活动的初步探讨[J]. 内陆地震, 1991,(2):161-165. Yan Tinghua. Preliminary Study of the Seismic Activities of Strong Earthquake along the Margin of Tarim and Zhungaer Basin in the Century[J]. Inland Earthquake, 1991, 5(2):161-165.
[38] 李恩泽,刘财,张良怀,等.松辽盆地地震构造与地震活动相关性研究[J]. 地球物理学进展, 2012,27(4):1337-1349. Li Enze, Liu Cai, Zhang Lianghuai, et al. The Correlation of Structure and Earthquake in Songliao Basin[J]. Progress in Geophysics, 2012, 27(4):1337-1349.
[39] 王健.林甸地震发震构造研究[D]. 长春:吉林大学,2013. Wang Jian. A Study on Seismogenic Structure of Lindian Earthquake[D]. Changchun:Jilin University, 2013.
[40] 吴微微,杨建思,苏金蓉,等. 2013年吉林前郭一乾安震源区中强地震矩张量反演与区域孕震环境研究[J]. 地球物理学报,2014,57(8):2541-2554. Wu Weiwei, Yang Jiansi, Su Jinrong, et al. Moment Inversion of Moderate Earthquakes and Seismogenic Environment in Qianguo-Qian'an Source Region, 2013, Jilin Province[J]. Journal of Chinese Geophysics, 2014, 57(8):2541-2554.
[41] 杨博,朱爽,周海涛,等. 2013年松原Ms 5.8地震的地壳水平形变背景[J]. 地震,2015,35(2):72-79. Yang Bo, Zhu Shuang, Zhou Haitao, et al. Horizontal Crust Deformation Field Before the 2013 Songyuan Ms 5.8 Earthquake in Jilin Province[J]. Earthquake, 2015, 35(2):72-79.
[42] 葛荣峰,张庆龙,解国爱,等.郯庐断裂带北段及邻区现代地震活动性与应力状态[J]. 地震地质, 2009, 31(1):141-154. Ge Rongfeng, Zhang Qinglong, Xie Guoai, et al. Seimic Activity and Stress State of the Northern Tanlu Fault Zone and Its Adjacent Areas[J]. Seimology and Geology, 2009, 31(1):141-154.
[43] 葛荣峰,张庆龙,徐士银,等.松辽盆地长岭断陷构造演化及其动力学背景[J]. 地质学刊, 2009, 33(4):346-358. Ge Rongfeng, Zhang Qinglong, Xu Shiyin, et al. Structure Evolution and Its Kinetic Setting of Changling Fault Depression in Songliao Basin[J]. Journal of Geology, 2009, 33(4):346-358.
[44] Sibson R H. Fault Rocks and Fault Mechanisms[J]. Geological Society of London, 1977, 133:191-213.
[45] 李传友,张良怀.吉林省松原地区1119年634级地震的发震构造条件[J]. 中国地震, 1999,15(3):237-246. Li Chuanyou, Zhang Lianghuai. Causative Tectonic Conditions of the Historic Earthquake (M=634) in 1119 in Songyuan Area[J]. Earthquake Research in China, 1999, 15(3):237-246.
[46] Fanara S, Sottili G, Silleni A, et al. CO2 Bubble Nucleation upon Pressure Release in Potassium-Rich Silicate Magmas[J]. Chemical Geology, 2017, 461:171-181.
[47] 干微,金振民,吴耀,等.深源地震机理的回顾:现状与问题[J]. 地学前缘, 2012,19(4):15-29. Gan Wei, Jin Zhenmin, Wu Yao, et al. A Review of the Mechanism of Deep Earthquake:Current Situation and Problem[J]. Earth Science Frontiers, 2012, 19(4):15-29.
[48] 林松辉.断裂及岩浆活动对幔源CO2气成藏的作用:以济阳坳陷为例[J]. 地球科学:中国地质大学学报, 2005,30(4):473-479. Lin Songhui. Fault and Magmatic Activity as Control of Mantle Source CO2 Gas Accumulation:A Case Study of Jiyang Depression[J]. Earth Science:Journal of China University of Geosciences, 2005, 30(4):473-479.
[1] 韩松, 刘国兴, 韩江涛. 华南地区进贤-柘荣剖面深部电性结构[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1837-1846.
[2] 李桐林, 张镕哲, 朴英哲. 大地电磁测深与地震初至波走时交叉梯度反演[J]. 吉林大学学报(地球科学版), 2015, 45(3): 952-961.
[3] 朴英哲,李桐林,刘永亮. 在大地电磁二维Occam反演中求取拉格朗日乘子方法改进[J]. 吉林大学学报(地球科学版), 2014, 44(2): 660-667.
[4] 谷洪彪,迟宝明,姜纪沂. 灾害学定义之下的土壤盐碱化风险评价[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1623-1629.
[5] 杨光, 赵占银, 张伟. 松辽盆地南部无机CO2成藏机理与分布[J]. J4, 2010, 40(4): 932-938.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!