吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1189-1196.doi: 10.13278/j.cnki.jjuese.20190052
• 地质工程与环境工程 • 上一篇
朴云仙1,2, 胡慧1,2, 姚兰1,2, 张彧1,2, 梁丽娜1,2, 刘再冉1,2
Piao Yunxian1,2, Hu Hui1,2, Yao Lan1,2, Zhang Yu1,2, Liang Lina1,2, Liu Zairan1,2
摘要: 为了提高复杂环境水体中雌激素污染的检测性能,通过直接吸附法将核酸适配体固定在氧化石墨烯表面,合成出核酸适配体修饰氧化石墨烯复合物,并将其应用于17β-雌二醇水体污染的高灵敏和特异性均相检测。采用紫外可见分光光谱分析核酸适配体修饰氧化石墨烯复合物,发现该复合物在250 nm处有较宽的肩峰,证明核酸适配体成功固定在氧化石墨烯表面。通过荧光分光光度计分析核酸适配体修饰氧化石墨烯复合物与目标物17β-雌二醇反应前后的荧光强度变化,发现荧光强度由峰值110增加到峰值450,表明该复合物可以成功用于对17β-雌二醇的检测,并且荧光强度与17β-雌二醇的质量浓度在10~100 μg/L范围内呈正比,最低检出限为6.2 μg/L。
中图分类号:
[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science 2004, 306:666-669. [2] Liu N, Liang G, Dong X, et. Stabilized Magnetic al Enzyme Aggregates on Graphene Oxide for High Performance Phenol and Bisphenol Removal[J]. Chemical Engineering Journal, 2016, 306:1026-1034. [3] 陈晨,张祖培,卢文阁,等. 工程陶瓷及特种石墨在热熔器结构设计中的应用[J]. 吉林大学学报(地球科学版), 2004,34(4):643-647. Chen Chen, Zhang Zupei, Lu Wenge, et al.The Application of Engineering Ceramics and Special Graphite in Construction Design of Subterrene Drills[J]. Journal of Jilin University (Earth Science Edition), 2004, 34(4):643-647. [4] Zeng Q O, Cheng J S, Tang L H, et al. Self-Assembled Graphene-Enzyme Hierarchical Nanostructures for Electrochemical Biosensing[J]. Advanced Functional Materials, 2010, 20(19):3366-3372. [5] Wang Y, Li Z, Hu D, et al. Aptamer/Graphene Oxide Nano Complex for in Situ Molecular Probing in Living Cells[J]. Journal of the American Chemical Socoety, 2010, 132(27):9274-9276. [6] Wang Y, Lu J, Tang L, et al. Graphene Oxide Amplified Electrogenerated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds[J]. Analytical Chemistry, 2009, 81(23):9710-9715. [7] 刘娜,梁刚,董新维,等. 酪氨酸酶固定化碳材料对苯酚的生物降解性能[J]. 吉林大学学报(地球科学版), 2017, 47(2):573-579. Liu Na, Liang Gang, Dong Xinwei, et al. Biodegradation Property of Phenol Using the Immobilized Tyrosinase on Carbon Material[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2):573-579. [8] Yan H, Xu Y, Lu Y, et al. Reduced Graphene Oxide-Based Solid Phase Extraction for the Enrichment and Detection of MicroRNA[J]. Analytical Chemistry, 2017, 89(19):10137-10140. [9] Wu M, Kempaiah R, Huang P J, et al. Adsorption and Desorption of DNA on Graphene Oxide Studied by Fluorescently Labeled Oligonucleotides[J]. Langmuir, 2011, 27(6):2731-2738. [10] Liu M, Song J, Shuang S, et al. A Graphene-Based Biosensing Platform Based on the Release of DNA Probes and Rolling Circle Amplification[J]. ACS Nano, 2014, 8(6):5564-5573. [11] Luo Y, Shi Z, Gao Q, et al. Magnetic Retrieval of Graphene:Extraction of Sulfonamide Antibiotics from Environmental Water Samples[J]. Journal of Chromatography A, 2011, 1218(10):1353-1358. [12] Robertson D L, Joyce G F. Selection In Vitro of an RNA Enzyme that Specifically Cleaves Single-Stranded DNA[J]. Nature, 1990, 344:467-468. [13] Tuerk C, Gold L. Systematic Evolution of Ligands by Exponential Enrichment:RNA Ligands to Bacteriophage T4 DNA Polymerase[J]. Science, 1990, 249:505-510. [14] Ellington A D, Szostak J W. In Vitro Selectionof RNA Molecules that Bind Specific Ligands[J]. Nature, 1990, 346:818-822. [15] Svobodova M, Skourodou V, Botero M, et al. The Characterizaion and Validation of 17β-Estradiol Binding Aptamers[J]. Journal of Steroid Biochemistry and Molecular Biology, 2017, 167:14-22. [16] Taghdisi S M, Danesh N M, Ramezani M, et al. A Novel M-Shape Electrochemical Aptasensor for Ultrasensitive Detection of Tetracyclines[J]. Biosensor and Bioelectronic, 2016, 85:509-514. [17] Gijs M, Penner G, Blackler G B, et al. Improved Aptamers for the Diagnosis and Potential Treatment of HER2-Positive Cancer[J]. Pharmaceuticals, 2016, 9(2), 1-21. [18] 杨悦锁,张戈,宋晓明,等. 地下水和土壤环境中雌激素运移和归宿的研究进展[J]. 吉林大学学报(地球科学版), 2016, 46(4):1176-1190. Yang Yuesuo, Zhang Ge, Song Xiaoming, et al. Transport and Fate of Estrogens in Soil and Groundwater:A Critical Review[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4):1176-1190. [19] Lucas S D, Jones D L. Biodegradation of Estrone and 17β-Estradiol in Grassland Soils Amended with Animal Wastes[J]. Soil Biology and Biochemistry, 2006, 38(9); 2803-2815. [20] Dong X, He L, Liu Y, et al. Preparation of Highly Conductive Biochar Nanoparticles for Rapid and Sensitive Detection of 17β-Estradiol in Water[J]. Electrochimica Acta, 2018, 292:55-62. [21] Draisci R, Purificato I, Delli Quadri F, et al. Development of an Electrochemical ELISA for the Screening of 17β-Estradiol and Application to Bovine Serum[J]. Analyst, 125(8):1419-1423. [22] Hu L, Cheng Q, Chen D, et al.Liquid-Phase Exfoliated Graphene as Highly-Sensitive Sensor for Simultaneous Determination of Endocrine Disruptors:Diethylstilbestrol and Estradiol[J]. Journal of Hazardous Materials, 2015, 283:157-163. [23] Fan L, Zhao G, Shi H, et al. A Femtomolar Level and Highly Selective 17β-Estradiol Photoelectrochemical Aptasensor Applied in Environmental Water Samples Analysis[J]. Environmental Science & Technology, 2014, 48(10):5754-5761. [24] Amorim K P, Andrade L S. Development and Application of a Cloud Point Method for the Extraction of Natural Estrogens E1 and E2 from Urine Samples and Their Simultaneous Determination by HPLC-EC Using a BDD Electrode[J]. Analytical Methods, 2017, 9:1627-1633. [25] 孙思明, 周焕英, 房彦军,等. 雌二醇的免疫胶体金试纸法检测[J]. 中国公共卫生, 2007, 23(1):126-127. Sun Siming, Zhou Huanying, Fang Yanjun, et al. Detection of Estradiol by Immune Colloidal-Gold Strips Method[J]. Chinese Journal of Public Health, 2007, 23(1):126-127. [26] 张庆峰, 高志贤, 王升启. 用于雌二醇检测的免疫芯片技术[J]. 中国生物工程杂志, 2004, 24(9), 86-88. Zhang Qingfeng, Gao Zhixian, Wang Shengqi.Immunochip Techniques for Detection of 17β-Estradiol[J]. China Biotechnology, 2004, 24(9), 86-88. [27] 朴云仙,祁小丽,胡慧,等. 基于核酸适配体功能化石墨纳米颗粒荧光探针的17β-雌二醇快速检测方法[J]. 吉林大学学报(地球科学版),2019,49(4):1137-1144. Piao Yunxian, Qi Xiaoli, Hu Hui, et al. A Method for Rapid Detection of 17β-Estradiol Based on Aptamer-Functionalized Graphite Nanoparticle as Fluorescent Probe[J]. Journal of Jilin University (Earth Science Edition),2019,49(4):1137-1144. [28] Yildirim N, Long F, Gao C, et al. Aptamer-Based Optical Biosensor for Rapid and Sensitive Detection of 17β-Estradiol in Water Samples[J]. Environmental Science & Technology, 2012, 46(6):3288-3294. [29] Huang K, Liu Y, Zhang J, et al. Aptamer/Au Nanoparticles/Cobalt Sulfide Nanosheets Biosensor for 17β-Estradiol Detection Using a Guanine-Rich Complementary DNA Sequence for Signal Amplification[J]. Biosensors and Bioelectronics, 2015, 67:184-191. [30] Alsager O A, Kumar S,Zhu B, et al. Ultrasensitive Colorimetric Detection of 17β-Estradiol:The Effect of Shortening DNA Aptamer Sequences[J]. Analytical Chemistry, 2015, 87(8):4201-4209. [31] Ai F, Zhong Y, Hu X, et al. Characterization on the Exfoliation Degree of Graphite Oxide into Graphene Oxide by UV-Visible Spectroscopy[J]. Journal of Wuhan University of Technology-Mater, 2016, 31(3):515-518. |
[1] | 董双石, 付绍珠, 于洋, 李超群, 初义聪. 还原氧化石墨烯复合方式对Ag-TiO2基光电极电子传输性能的影响[J]. 吉林大学学报(地球科学版), 2020, 50(1): 234-242. |
[2] | 朴云仙, 祁小丽, 王湘, 康博泉, 史玉玺, 胡慧, 杨悦锁. 基于核酸适配体功能化石墨纳米颗粒荧光探针的17β-雌二醇快速检测方法[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1137-1144. |
[3] | 刘娜, 梁刚, 董新维, 祁小丽, 杨悦锁, 叶康, 朴云仙. 酪氨酸酶固定化碳材料对苯酚的生物降解性能[J]. 吉林大学学报(地球科学版), 2017, 47(2): 573-579. |
|