吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (3): 919-928.doi: 10.13278/j.cnki.jjuese.20190073

• 地球探测与信息技术 • 上一篇    

基于微元动态物质平衡法模型确定水淹层混合液电阻率

秦敏1,2, 申辉林1, 丁磊2, 刘欢1, 黄信雄1, 章利民1   

  1. 1. 中国石油大学地球科学与技术学院, 山东 青岛 266580;
    2. 中海石油(中国)有限公司湛江分公司, 广东 湛江 524057
  • 收稿日期:2019-04-07 发布日期:2020-05-29
  • 作者简介:秦敏(1993-),男,硕士研究生,主要从事测井资料综合评价研究,E-mail:qinmin2@cnooc.com.cn
  • 基金资助:
    中海石油(中国)有限公司项目(YXKY-2014-ZJ-01)

Determining Mixed Liquid Resistivity of Water-Flooded Reservoir Based on Micro-Element Dynamic Material Balance Model

Qin Min1,2, Shen Huilin1, Ding Lei2, Liu Huan1, Huang Xinxiong1, Zhang Limin1   

  1. 1. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China;
    2. Zhanjiang Branch of CNOOC Ltd, Zhanjiang 524057, Guangdong, China
  • Received:2019-04-07 Published:2020-05-29
  • Supported by:
    Supported by Project of China National Offshore Oil Corporation (YXKY-2014-ZJ-01)

摘要: 水淹层测井评价关键技术之一就是精确计算水淹层混合液电阻率,目前精确计算水淹层混合液电阻率的方法精度亟需提高。为此,本文提出精确计算地层混合液电阻率的微元动态物质平衡法。该方法将水驱油过程微元化,并考虑到水驱油过程中地层原生水与注入水离子有效交换比例这个变量,理论上该变量随水淹程度的增强从0逐渐变为1。对比结果表明,一阶导电法、变倍数物质平衡法和改进的微元动态物质平衡法模拟计算岩石电阻率的平均相对误差分别为0.192、0.169和0.124,改进的微元动态物质平衡法精度有了较大的提高,并且得到的混合液电阻率在不同水淹类型测井评价中可以更精确地计算剩余油饱和度。该方法已推广应用到各大油田不同水淹类型测井评价中,计算的水淹层含水饱和度与密闭取心的饱和度数据最为接近,水淹层测井综合解释符合率达到87%以上。

关键词: 水淹层, 水驱油动态模型, 混合液电阻率, 微元动态导电机理

Abstract: One of the key techniques for logging evaluation of water-flooded reservoir is to determine the resistivity of the mixed liquid of water-flooded reservoir. At present, the method of calculating the resistivity of the mixed liquid of water-flooded reservoir needs to be improved. In this paper,a dimensional dynamic material balance method is proposed to accurately calculate the resistivity of formation mixed fluid. The method makes the water flooding process microelement and takes into account the variable exchange ratio of original water and the injected water ions in the water flooding process. In theory, the variable gradually changes from 0 to 1 with the increase of flooding degree. The comparison results show that the average relative errors of the rock resistivity calculated by the first derivative method, the variable magnification material balance method, and the improved micro-element dynamic material balance method are 0.192, 0.169, and 0.124 respectively. The improved micro-element dynamic material balance method is more accurate when measuring the mixed solution resistivity in different flooding types. The residual oil saturation can be calculated more accurately in well evaluation. The method has been applied to the well logging evaluation of different flooding types in major oil fields. The calculated water saturation of water-flooded reservoir is the closest to the saturation data of the closed coring. The comprehensive interpretation coincidence rate of the flooded reservoir logging reaches more than 87%.

Key words: water flooded reservoir, water flooding dynamic model, mixed liquid resistivity, micro-element dynamic conduction mechanism

中图分类号: 

  • P631.84
[1] 雍世和,张超谟.测井数据处理与综合解释[M].东营:中国石油大学出版社,2002. Yong Shihe, Zhang Chaomo. Logging Data Processing and Comprehensive Interpretation[M]. Dongying:China University of Petroleum Press, 2002.
[2] 张中庆,张庚骥.阵列型感应测井的多参数反演[J].测井技术,1998,22(5):15-20. Zhang Zhongqing, Zhang Gengyi. Multi-Parameter Inversion of Array Induction Logging[J]. Well Logging Technology, 1998, 22(5):15-20.
[3] 赵文杰.水淹层岩石电阻率特性的实验研究[J].油气采收率技术,1995,2(4):32-39. Zhao Wenjie. The Experimental Study of Rock Resistivity in Water Flooding Reservoir[J] Petroleum Geology and Recovery Efficiency, 1995, 2(4):32-39.
[4] 范宜仁,邓少贵,刘开兵.淡水驱替过程中的岩石电阻率实验研究[J].测井技术,1998,22(3):152-155. Fan Yiren, Deng Shaogui, Liu Kaibing. Experiment on Rock Resistivity in the Process of Fresh Water Drive[J]. Well Logging Technology, 1998, 22(3):152-155.
[5] 田中元,穆龙新,孙德明,等.砂砾岩水淹层测井特点及机理研究[J].石油学报,2002,23(6):50-55,3. Tian Zhongyuan, Mu Longxin, Sun Deming, et al. Logging Characteristics and Mechanism of Sand-Conglomerate Flooded Layer[J]. Acta Petrolei Sinica, 2002, 23(6):50-55, 3.
[6] 王敬农. 混合液电导率的实验室研究[J].测井技术,1985,9(1):42-46. Wang Jingnong. Laboratory Studies of Conductivity of Mixed Fluid[J]. Well Logging Technology, 1985, 9(1):42-46.
[7] 邹长春,尉中良. 计算混合液电阻率的一种有效方法[J]. 物探化探计算技术,1999,21(3):216-219. Zou Changchun, Yu Zhongliang. An Effective Method for Calculating the Resistivity of Mixed Liquid[J]. Geophysical and Geochemical Exploration Techniques, 1999, 21(3):216-219.
[8] 杨景强,卢艳,马宏宇,等. 水淹层地层水电阻率变化规律研究[J]. 测井技术,2006,30(3):195-197. Yang Jingqiang, Lu Yan, Ma Hongyu, et al. Study on the Variation Law of Water Resistivity in Water-Flooded Formations[J]. Well Logging Technology, 2006, 30(3):195-197.
[9] 王丽,谭伟,何胜林,等. 基于并联导电模型的水淹层剩余油饱和度评价方法[J]. 大庆石油地质与开发,2016,35(2):134-139. Wang Li, Tan Wei, He Shenglin, et al. Evaluating Method of the Remained Oil Saturation for the Watered-Out Reservoir Based on Parallel Conduction Model[J]. Petroleum Geology and Oilfield Development in Daqing, 2016,35(2):134-139.
[10] 褚人杰,孙德明,姜文达.确定水驱油藏地层混合液电阻率的方法[J],测井技术, 1995,19(2):117-125. Chu Renjie, Sun Deming, Jiang Wenda. Methods for Determining Resistivity of Mixed Formation Water in Water Drive Reservoir[J]. Well Logging Technology, 1995, 19(2):117-125.
[11] 朱广祥,郭秀军,余乐,等. 高黏粒含量海洋土电阻率特征分析及模型构建[J]. 吉林大学学报(地球科学版), 2019,49(5):1457-1465. Zhu Guangxiang, Guo Xiujun, Yu Le, et al. Resistivity Characteristics Analysis and Model Construction of Marine Clay with High Clay Content[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5):1457-1465.
[12] 鞠武,申辉林,杨宏,等. 准噶尔盆地砾岩油藏水淹层的测井评价方法研究[J]. 地球物理学进展,2009,24(3):974-980. Ju Wu, Shen Huilin, Yang Hong, et al. Study on the Evaluation of Watered-Out Zones in the Conglomerate Reservoir with Logging Information in the Junggar Basin[J]. Progress in Geophysics, 2009, 24(3):974-980.
[13] 张超谟,张占松,郭海敏,等. 水驱油电阻率与含水饱和度关系的理论推导和数值模拟研究[J]. 地球科学,2008,38(增刊2):151-156. Zhang Chaomo, Zhang Zhansong, Guo Haimin, et al. Theoretical Derivation and Numerical Simulation of the Relationship Between Water Flooding Resistivity and Water Saturation[J]. Earth Science, 2008, 38(Sup. 2):151-156.
[14] 申辉林,方鹏.水驱油地层电阻率变化规律数值模拟及拐点影响因素分析[J].中国石油大学学报(自然科学版), 2011,35(3):58-62. Shen Huilin, Fang Peng. Numerical Simulation of Formation Resistivity Variation in Water Drive Process and Analysis of Influence Factors of Inflection Point[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2011, 35(3):58-62.
[15] 方鹏.水淹层测井精细评价方法研究[D].东营:中国石油大学, 2011. Fang Peng. Log Evaluation and Method Research of Water Flooded Reservoir[D]. Dongying:China University of Petroleum, 2011.
[1] 贾莹刚, 赵军, 蒋磊, 关力伟, 王小玄, 何亮. 伊犁地块北缘早古生代构造属性:来自温泉地区闪长岩的证据[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1015-1038.
[2] 周翔. 松辽盆地北部营城组火山岩地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1001-1014.
[3] 叶涛, 韦阿娟, 黄志, 赵志平, 肖述光. 基于主成分分析法与Bayes判别法组合应用的火山岩岩性定量识别:以渤海海域中生界为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 872-879.
[4] 李晓辉, 周彦球, 缑艳红, 王玉华, 姜宝彦. 电成像测井孔隙度分析技术及其在碳酸盐岩储层产能预测中的应用[J]. J4, 2012, 42(4): 928-934.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!