吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (3): 866-874.doi: 10.13278/j.cnki.jjuese.20190142

• 地质工程与环境工程 • 上一篇    

无人机摄影测量在矿山地质环境调查中的应用

王凤艳, 赵明宇, 王明常, 张旭晴, 周凯   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2019-07-17 发布日期:2020-05-29
  • 通讯作者: 王明常(1975-),男,教授,博士,主要从事遥感与地理信息系统方面的教学研究,E-mail:wangmc@jlu.edu.cn E-mail:wangmc@jlu.edu.cn
  • 作者简介:王凤艳(1970-),女,教授,博士,主要从事工程地质测量方面的研究,E-mail:wangfy@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41472243,41820104001);自然资源部城市国土资源监测与仿真重点实验室开放基金项目(KF-2019-04-080);自然资源部地面沉降监测与防治重点实验室开放基金项目(KLLSMP201901)

Application of UAV Photogrammetry in Mine Geological Environment Survey

Wang Fengyan, Zhao Mingyu, Wang Mingchang, Zhang Xuqing, Zhou Kai   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2019-07-17 Published:2020-05-29
  • Supported by:
    Supported by National Natural Science Foundation of China(41472243,41820104001),Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources of China(KF-2019-04-080) and Open Fund of Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Natural Resources of China(KLLSMP201901)

摘要: 为解决传统的人工野外矿山地质环境调查易受交通、地形影响,且劳动强度大、效率低、成本高等问题,将无人机摄影测量技术应用在矿山地质环境调查中。以长春市净月东升采石场为研究区,利用RTK(实时动态差分技术)获取地面控制点坐标,采用大疆精灵4无人机进行航空摄影,在Pix4Dmapper建立的研究区三维模型上经量测、解译等,提取研究区内矿坑面积、边坡方位、长度、高度、体积和表面积以及滑坡、崩塌堆积体和断层等矿山地质环境相关的几何信息,制作了研究区地形图、DOM(数字正射影像)和DSM(数字表面模型),同时解译了边坡大量随机结构面迹线和产状信息。结果表明,基于无人机摄影测量技术的矿山地质环境调查可以快速获取矿山地质环境信息,获取的结构面倾向、倾角误差分别在5°和4°以内,可满足矿山地质环境调查精度要求。

关键词: 无人机, 摄影测量, 矿山, 地质环境

Abstract: Traditional field survey of mine geological environment is easily affected by traffic and terrain,and labor intensity, the working efficiency is low, and the cost is high. In this paper, the application of unmanned aerial vehicle (UAV) photogrammetry technology in mine geological environment survey is studied. By taking Changchun Jingyue Dongsheng quarry as the study area, the ground control point coordinates were determined by using the RTK(real-time kinematic), and the geometric information related to the mining environment in the study area was obtained by using DJI Phantom 4 UAV for aerial photography, such as slope orientation, length, height, volume, surface area, landslides, collapsed deposits, and faults. After measurement and interpretation, the 3D model of the study area was established by using Pix4Dmapper, topographic maps, DOM,and DSM of the study area were made,meanwhile,a lot of trace and orientation information of random discontinuities were interpreted. The results show that the mine geological environment survey based on UAV photogrammetry technology can quickly obtain the information of mine geological environment, and the discontinuity dip and dip angle errors obtained are within 5° and 4° respectively, which meet the precision requirement of mine geological environment survey.

Key words: unmanned aerial vehicle, photogrammetry, mine, geological environment

中图分类号: 

  • TD167
[1] Yang Zhi, Li Wenping, Pei Yabing, et al. Classification of the Type of Eco-Geological Environment of a Coal Mine District:A Case Study of an Ecologically Fragile Region in Western China[J]. Journal of Cleaner Production,2018, 174:1513-1526.
[2] Liu Li, Chen Liqun, Tang Jianxin, et al. Present Situation and Future Prospects of Geologic Environment Issues in Mines in China[J]. Disaster Advances, 2010, 4(3):563-566.
[3] Cheng Xianfeng,Xu Jun,Qi Wufu,et al. Research Background, Content and Route of Geological Environment Survey and Evaluation for Typical Metal Mines in Yunnan, China[J]. Matec Web of Conferences,2016, 63:03018.
[4] 卢文喜,郭家园,董海彪,等. 改进的支持向量机方法在矿山地质环境质量评价中的应用[J].吉林大学学报(地球科学版),2016,46(5):1511-1519. Lu Wenxi,Guo Jiayuan,Dong Haibiao,et al. Evaluating Mine Geology Environmental Quality Using Improved SVM Method[J]. Journal of Jilin University(Earth Science Edition),2016,46(5):1511-1519.
[5] Liu Changrong,Huang Shuangbing,Zang Lizhong. New Mine Geological Environment Impact Assessment Method[J]. Journal of Groundwater Science and Engineering, 2014, 2:88-96.
[6] 范雪婷,赵朝贺,潘九宝,等. 矿山地质环境及治理恢复现状的调查与评价:以任楼矿区为例[J]. 资源与矿产,2018, 20(6):47-51. Fan Xueting,Zhao Chaohe,Pan Jiubao,et al. A Case Study on Renlou Mine:Investigation and Evaluation of Restoration of Mine Geological Environment[J]. Resources & Industries, 2018, 20(6):47-51.
[7] 陈蒙,林锦富,段昌盛. 绿色矿山建设中的地质灾害监测数字化技术应用[J]. 地质灾害与环境保护,2018, 29(4):54-57. Chen Meng, Lin Jinfu,Duan Changsheng. Application of Digital Technology in Geological Disaster Monitoring of Green Mine Construction[J]. Journal of Geological Hazards and Environment Preservation,2018,29(4):54-57.
[8] 矿山地质环境保护与恢复治理方案编制规范:DZ/T 0223-2011[S]. 北京:中国标准出版社,2011. Compiling Code on the Project of Mining Geo-Environmental Protection and Integrated Renovation:DZ/T 0223-2011[S]. Beijing:Standards Press of China, 2011.
[9] 董秀军,黄润秋. 三维激光扫描技术在高陡边坡地质调查中的应用[J].岩石力学与工程学报,2006,25(增刊2):3629-3635. Dong Xiujun, Huang Runqiu. Application of 3D Laser Scanning Technology to Geologic Survey of High and Steep Slope[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(Sup.2):3629-3635.
[10] 朴晶. 三维激光扫描仪与红外热像仪在岩石风化场地中的应用研究[D]. 长春:吉林大学,2011. Piao Jing. Research on the Application of 3D Laser Scanner and Infrared Thermography in the Rock Weathering[D]. Changchun:Jilin University,2011.
[11] 江颜,闫俊,陈思娇. 三维激光扫描在矿区边坡地质调查中的应用[J].有色金属(矿山部分),2013, 65(5):96-100. Jiang Yan, Yan Jun, Chen Sijiao.Application of 3D Laser Scanning Technology in Mining Slope Geological Survey[J]. Nonferrous Metals(Mining Section), 2013, 65(5):96-100.
[12] 李浩,张友静,吴继敏. 用近景摄影测量方法进行边坡地质编录[J]. 工程地质计算机应用,1999, 13(2):18-20. Li Hao,Zhang Youjing,Wu Jimin. The Geological Survey of the Slope Carried out Using the Near Shot Photogrammetric Method[J]. Engineering Geological Computer Application, 1999, 13(2):18-20.
[13] 赵兴东,刘杰,张洪训,等. 基于摄影测量的岩体结构面数字识别及采场稳定性分级[J]. 采矿与安全工程学报,2014, 31(1):127-133. Zhao Xingdong,Liu Jie,Zhang Hongxun,et al. Rockmass Structural Plane Digital Recognition and Stope Stability Classification Based on the Photographic Surveying Method[J]. Journal of Mining & Safety Engineering, 2014, 31(1):127-133.
[14] 王凤艳,陈剑平,付学慧,等. 基于VirtuoZo的岩体结构面几何信息获取研究[J].岩石力学与工程学报,2008, 27(1):169-175. Wang Fengyan,Chen Jianping,Fu Xuehui,et al. Study on Geometrical Information of Obtaining Rock Mass Discontinuities Based on VirtuoZo[J]. Chinese Journal of Rock Mechanics and Engineering,2008, 27(1):169-175.
[15] 杨燕,杜甘霖,曹起铜. 无人机航测技术在地质灾害应急测绘中的研究与应用:以9.28丽水山体滑坡应急测绘为例[J].测绘通报,2017, 21(增刊1):119-122. Yang Yan,Du Ganlin,Cao Qitong. Application of UAV Aerial Surveying Technology in Geological Disaster Emergency Mapping[J]. Bulletin of Surveying and Mapping,2017, 21(Sup.1):119-122.
[16] Song Fei, Dan Tingting, Yu Riu, et al. Small UAV-Based Multi-Temporal Change Detection for Monitoring Cultivated Land Cover Changes in Mountainous Terrain[J]. Remote Sensing Letters,2019, 6(10):573-583.
[17] Congress S S C,Puppala A J,Lundberg C L,et al. Total System Error Analysis of UAV-CRP Technology for Monitoring Transportation Infrastructure Assets[J]. Engineering Geology,2018, 247:104-116.
[18] 张剑清,潘励,王树根. 摄影测量学[M].武汉:武汉大学出版社,2009. Zhang Jianqing, Pan Li, Wang Shugen. Photogrammetry[M]. Wuhan:Wuhan University Press, 2009.
[19] 王凤艳,黄润秋,陈剑平,等. 基于免棱镜全站仪的岩体边坡控制测量及结构面产状检验测量[J]. 吉林大学学报(工学版),2013, 43(6):1607-1614. Wang Fengyan,Huang Runqiu,Chen Jianping,et al. Control Surveying of Rock Mass Slope and Orientation Validation Measurement of Discontinuities Based on Reflectorless Total Station Instrument[J]. Journal of Jilin University (Engineering and Technology Edition), 2013,43(6):1607-1614.
[20] 工程地质测绘标准:CECS 238-2008.[S].北京:中国计划出版社,2008. Standard for Engineering Geological Survey and Mapping:CECS 238-2008[S]. Beijing:China Planning Press, 2008.
[21] 林君建,苍桂华. 摄影测量学[M]. 北京:国防工业出版社,2012. Lin Jianjun,Cang Guihua. Photogrammetry[M]. Beijing:National Defense Industry Press, 2012.
[22] 赵明宇,王凤艳,王明常,等. 基于无人机摄影测量的岩体结构面信息获取[J].工程地质学报,2018, 26(增刊):480-487. Zhao Mingyu,Wang Fengyan,Wang Mingchang,et al. Rock Mass Discontinuity Acquisition Based on Photogrammetry of UAV[J]. Journal of Engineering Geology, 2018, 26(Sup.):480-487.
[23] Ding Qing,Huang Runqiu,Wang Fengyan,et al. Multi-Parameter Dominant Grouping of Discontinuities in Rock Mass Using Improved ISODATA Algorithm[J/OL]. Mathematical Problems in Engineering, (2018-12-03)[2019-04-12].doi:10.1155/2018/5619404.
[1] 刘子侠, 陈剑平, 王凤艳, 韩东亮. 基于活动控制的岩体结构面几何信息快速获取[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1192-1199.
[2] 王明常, 徐则双, 王凤艳, 孟祥羽, 丁庆, 张馨月. 基于摄影测量获取岩体结构面参数的概率分布拟合检验[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1898-1906.
[3] 王吉亮, 施炎, 周炳强, 杨静, 郝文忠, 廖立兵, 康双双. 逐层开挖工程整体三维影像模型构建方法[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1589-1595.
[4] 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733.
[5] 卢文喜, 郭家园, 董海彪, 张宇, 林琳. 改进的支持向量机方法在矿山地质环境质量评价中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1511-1519.
[6] 王凤艳,陈剑平,杨国东,孙丰月,姜琦刚. 基于数字近景摄影测量的岩体结构面几何信息解算模型[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1839-1846.
[7] 刘传正, 刘艳辉. 论地质灾害防治与地质环境利用[J]. J4, 2012, 42(5): 1469-1476.
[8] 陈国旭, 吴冲龙, 张夏林. 计算机辅助矿产资源储量动态估算与管理模型[J]. J4, 2010, 40(6): 1508-1514.
[9] 殷汉琴, 周涛发, 张鑫, 袁峰, 李湘凌, 陈永宁, 陈兴仁, 陈富荣, 贾十军. 铜陵市大气降尘中铜元素的污染特征[J]. J4, 2009, 39(4): 734-738.
[10] 陈力,梁海安,张文娟,荣帆. 模糊数学方法在城市工程地质环境区划中的应用--以抚顺市城区为例[J]. J4, 2008, 38(5): 837-0840.
[11] 杨化超,邓喀中,杨国东,牛雪峰,董四辈. 矿山条带开采相似材料模型变形测量[J]. J4, 2007, 37(1): 190-0194.
[12] 廖香俊,冯亚生,丁式江,张本仁,徐忠胜,吴 丹. 海南岛东北部地质环境评价[J]. J4, 2005, 35(05): 646-652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!