吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (1): 277-285.doi: 10.13278/j.cnki.jjuese.20190183
• 地球探测与信息技术 • 上一篇
贾卓, 刘四新, 赵雪然, 鹿琪, 李宏卿, 王元新
Jia Zhuo, Liu Sixin, Zhao Xueran, Lu Qi, Li Hongqing, Wang Yuanxin
摘要: 由于地质体和矿体的形态非常复杂,使用长方体网格离散建立正演模型时可能和真实情况有很大差别,因此计算结果可靠性差。本文提出一种基于约束Delaunay网格剖分的方法对地质体进行离散并进行重力建模,在模型边界等复杂区域使用网格自适应加密技术,将三维地质体离散为有限个四面体;并详细推导出针对四面体网格的重力正演公式,实现了基于约束Delaunay网格剖分技术的三维重力数值模拟;最后,针对一个合成数据模型,将计算解与解析解对比。结果表明,细化网格的模拟结果比粗糙网格更好,满足数值模拟的精度要求。将该方法应用到金川矿区实际地质体建模中,根据局部需要,建立各处网格密度不均匀的三维模型,并计算该模型的地表重力场,而后对比模拟数据与实测数据,结果表明Delaunay网格建模方法具有很强的适用性,能够模拟复杂的地质体重力异常。
中图分类号:
[1] Juan G A. 3D Forward and Inverse Modeling of Total-Field Magnetic Anomalies Caused by a Uniformly Magnetized Layer Defined by a Linear Combination of 2D GaussianFunctions[J]. Geophysics, 2007, 73(1):11. [2] Bhattacharyya B K. A Generalized Multibody Model for Inversion of Magnetic Anomalies[J]. Geophysics, 1980, 45(2):255-270. [3] Gunn P J. Quantitative Methods for Interpreting Aeromagnetic Data:A Subjective Review[J]. AGSO Journal of Australian Geology & Geophysics, 1997, 17(2):105-113. [4] Nettleton L L. Gravity and Magnetic Calculations[J]. Geophysics, 1942, 7(3):293. [5] Caratori T F, Cocchi L, Carmisciano C. Rapid 3-D Forward Model of Potential Fields with Application to the Palinuro Seamount Magnetic Anomaly (Southern Tyrrhenian Sea, Italy)[J]. Journal of Geophysical Research, 2009, 114(B2):B02103. [6] Hamilton D E, Jones T A. Computer Modeling of Geologic Surfaces and Volumes[C]//AAPG Computer Applications in Geology. Tulsa:[s.n.], 1992:297. [7] Christian J T. 3D Geoscience Modeling:Computer Techniques for Geological Characterization[M]. Berlin:Berlin Springer-Verlag, 1996. [8] Jessell M. Three-Dimensional Geological Modelling of Potential-Field Data[J]. Computers & Geosciences, 2001, 27(4):455-465. [9] Reinhard P, John W H. Computer Graphics in Geology[J]. Lecture Notes in Earth Sciences, 1992, 41(4):613-614. [10] Talwani M. Computation with the Help of a Digital Computer of Magnetic Anomalies Caused by Bodies of Arbitrary Shape[J]. Geophysics, 1965, 30(5):797. [11] Plouff D. Gravity and Magnetic Fields of Polygonal Prisms and Applications to Magnetic Terrain Corrections[J]. Geophysics, 1976, 41:727-741. [12] Pignatelli A, Nicolosi I,Carluccio R, et al. Graphical Interactive Generation of Gravity and Magnetic Fields[J]. Computers & Geosciences, 2011, 37(4):567-572. [13] Tontini C. Rapid Interactive Modeling of 3D Magnetic Anomalies[J]. Computers & Geosciences, 2012, 48:308-315. [14] Blakely R J. Potential Theory in Gravity and Magnetic Applications[M]. London:Cambridge University Press, 1995. [15] Shin Y H, Choi K S, Xu H. Three-Dimensional Forward and Inverse Models for Gravity Fields Based on the Fast Fourier Transform[J]. Computers & Geosciences, 2006, 32(6):727-738. [16] 张岭, 郝天珧. 基于Delaunay剖分的二维非规则重力建模及重力计算[J].地球物理学报,2006, 49(3):877-884. Zhang Ling, Hao Tianyao. 2-D Irregular Gravity Modeling and Computation of Gravity Based on Delaunay Triangulation[J]. Chinese Journal of Geophysics, 2006, 49(3):877-884. [17] Barnett C T. Theoretical Modeling of the Magnetic and Gravitational Fields of an Arbitrary Shaped Three-Dimensional Body[J]. Geophysics, 1976, 41:1353-1364. [18] Okabe M. Analytical Expressions for Gravity Anomalies Due to Homogeneous Polyhedral Bodies and Translations into Magnetic Anomalies[J]. Geophysics, 1979, 44(4):730-741. [19] Pohanka V. Optimum Expression for Computation of the Gravity Field of Homogeneous Polyhedral Body[J]. Geophysical Prospecting, 1988, 36(7):733-751. [20] Liu S, Hu X, Xi Y, et al. 2D Inverse Modeling for Potential Fields on Rugged Observation Surface Using Constrained Delaunay Triangulation[J]. Computers & Geosciences, 2015, 76:18-30. [21] Luo Yao,Yao Changli. Forward Modeling of Gravity, Gravity Gradients, and Magnetic Anomalies Due to Complex Bodies[J]. Journal of China University of Geosciences, 2007, 18(3):280-286. [22] Roy K K. Potential Theory in Applied Geophysics[M]. Calcutta:Springer Science & Business Media, 2007. [23] 刘海飞, 柳建新, 郭荣文,等.起伏地形三维激电连续介质模型快速反演[J]. 吉林大学学报(地球科学版), 2011,41(4):1212-1218. Liu Haifei, Liu Jianxin, Guo Rongwen, et al. Efficient Inversion of 3D IP Data for Continuous Model with Complex Geometry[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(4):1212-1218. [24] 林家勇, 汤井田, 丁茂斌, 等. 复杂地形条件下激发极化有限单元法三维数值模拟[J]. 吉林大学学报(地球科学版), 2010, 40(5):1183-1187. Lin Jiayong, Tang Jingtian, Ding Maobin, et al. Three-Dimension Numerical Simulation of Induced Polarization & Finite Element Method Under Complicated Terrain[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(5):1183-1187. [25] 李振海, 罗志才, 钟波. 基于3D Delaunay剖分算法的重力建模与分析[J]. 地球物理学报, 2012, 55(7):2259-2267. Li Zhenhai, Luo Zhicai, Zhong Bo. Gravity Modeling and Analyzing Based on 3D Delaunay Triangulation Algorithm[J]. Chinese Journal of Geophysics, 2012, 55(7):2259-2267. [26] 郑耀, 陈建军. 非结构网格生成:理论、算法和应用[M]. 北京:科学出版社, 2016. Zheng Yao,Chen Jianjun. Unstructured Mesh Generation:Theories, Algorithms and Applications[M].Beijing:Science Press, 2016. [27] Tang Z. Main Genetic Types of Ni Ore Deposits in China and Their Relations to Paleo-Plate Tectonics[J]. Geochemistry, 1984, 3(2):102-114. [28] 段俊, 钱壮志, 焦建刚, 等. 甘肃龙首山岩带西井镁铁质岩体成因及其构造意义[J]. 吉林大学学报(地球科学版), 2015(3):832-846. Duan Jun, Qian Zhuangzhi, Jiao Jiangang, et al. Genesis of Xijing Intrusion from Longshoushan Terrane and the Tectonic Significance[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(3):832-846. |
[1] | 林家勇, 汤井田, 丁茂斌, 杨晓弘, 杨树云. 复杂地形条件下激发极化有限单元法三维数值模拟[J]. J4, 2010, 40(5): 1183-1187. |
|