吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (1): 247-255.doi: 10.13278/j.cnki.jjuese.20190207
• 地质工程与环境工程 • 上一篇
王晟1, 冯翔2, 李兵2, 郭林2, 曹坤1, 刘鹏1
Wang Sheng1, Feng Xiang2, Li Bing2, Guo Lin2, Cao Kun1, Liu Peng1
摘要: 为了研究不同类型的生物炭对模拟地下水中去除Cr(Ⅵ)的影响,选用杨木、柳木、桃木和松木为原料,分别在300℃和600℃热解温度下,制备不同粒径、经氯化铁改性的和未改性的20种生物炭,设计了一系列批实验,探究不同种类的生物炭对模拟地下水中Cr(Ⅵ)的去除效果;并采用傅里叶变换红外光谱(FTIR)和X射线近边吸收光谱(XANES)研究了生物炭去除Cr(Ⅵ)的机理。结果表明:在300℃下热解制成的改性生物炭,对Cr(Ⅵ)去除率均达到了99.0%以上;和粒径2 mm的生物炭相比,粒径<0.5 mm的生物炭对Cr(Ⅵ)有更好的去除效果;拟一级动力学方程较好地描述了300℃热解温度下杨木铁改性生物炭(FeCl3BC300Y)对Cr(Ⅵ)的去除过程。XANES分析结果表明,FeCl3BC300Y中的铬以三价的形态(Cr(Ⅲ))存在,FTIR分析表明羟基和羧基参与了Cr(Ⅵ)的去除。生物炭通过氧化还原和络合作用去除Cr(Ⅵ)。铁改性生物炭有望作为可渗透反应墙的填充材料,成为修复Cr(Ⅵ)污染地下水的新型材料。
中图分类号:
[1] Chen S, Yue Q, Gao B, et al. Adsorption of Hexavalent Chromium from Aqueous Solution by Modified Corn Stalk:A Fixed-Bed Column Study[J]. Bioresource Technology, 2012, 113(4):114-120. [2] 张厚坚, 王兴润, 陈春云, 等. 高原地区铬渣污染场地污染特性研究[J]. 环境工程学报, 2010, 4(4):915-918. Zhong Houjian, Wang Xingrun, Chen Chunyun, et al. Study on the Polluting Property of Chrome Residue Contaminated Sites in Plateau Section[J]. Chinese Journal of Environmental Engineering, 2010, 4(4):915-918. [3] 崔永高. 铬污染土壤和地下水的修复技术研究进展[J]. 工程地质学报, 2017, 25(4):1001-1009. Cui Yonggao. Research Progress on Remediation Technology of Chromium Contaminated Soils and Groundwater in Shanghai[J]. Journal of Engineering Geology, 2017, 25(4):1001-1009. [4] Pellerin C, Booker S M. Reflections on Hexavalent Chromium:Health Hazards of an Industrial Heavyweight[J]. Environmental Health Perspectives, 2000, 108(9):A402-A407. [5] 吴继明, 程胜高. 探讨六价铬对人体健康的影响及防治措施[J]. 现代预防医学, 2009, 36(24):4610-4611. Wu Jiming, Cheng Shenggao. The Influence and Precautionary and Therapeutic Measures of Human Health in Exposure of Hexavalent Chromium[J]. Modern Preventive Medicine, 2009, 36(24):4610-4611. [6] 地下水质量标准:GB/T 14848-2017[S]. 北京:中国标准出版社, 2017. Quality Standard for Ground Water:GB/T 14848-2017[S]. Beijing:China Standards Press, 2017. [7] 杨维, 王立东, 徐丽, 等. 铬污染地下水的PRB反应介质筛选及修复试验[J]. 吉林大学学报(地球科学版), 2008, 38(5):854-858. Yang Wei, Wang Lidong, Xu Li, et al. Experiment on Selection of PRB Media and Remediation of Chromium Contaminated Groundwater[J]. Journal of Jilin University (Earth Science Edition), 2008,38(5):854-858. [8] Blowes D W, Ptacek C J, Jambor J L. In-Situ Remediation of Cr(Ⅵ)-Contaminated Groundwater Using Permeable Reactive Walls:Laboratory Studies[J]. Environ Sci Technol, 1997, 31(12):3348-3357. [9] 董军, 赵勇胜, 赵晓波, 等. PRB技术处理污染地下水的影响因素分析[J]. 吉林大学学报(地球科学版), 2005, 35(2):226-230. Dong Jun, Zhao Yongsheng, Zhao Xiaobo, et al. Analysis of Influencing Factors on in Situ Remediation of Leachate Polluted Groundwater with PRB Technology[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(2):226-230. [10] Waybrant K R, Ptacek C J, Blowes D W. Treatment of Mine Drainage Using Permeable Reactive Barriers:Column Experiments[J]. Environmental Science & Technology, 2002, 36(6):1349-1356. [11] Tytak A, Oleszczuk P, Dobrowolski R. Sorption and Desorption of Cr(Ⅵ) Ions from Water by Biochars in Different Environmental Conditions[J]. Environmental Science & Pollution Research International, 2015, 22(8):5985-5994. [12] Choudhary B, Paul D. Isotherms, Kinetics and Thermodynamics of Hexavalent Chromium Removal Using Biochar[J]. Journal of Environmental Chemical Engineering, 2018, 6(2):2335-2343. [13] Mohan D, Pittman C U. Activated Carbons and Low Cost Adsorbents for Remediation of Tri-and Hexavalent Chromium from Water[J]. Journal of Hazardous Materials, 2006, 137(2):762-811. [14] Farghali A A, Tawab H A A, Moaty S A A, et al. Functionalization of Acidified Multi-Walled Carbon Nanotubes for Removal of Heavy Metals in Aqueous Solutions[J]. Journal of Nanostructure in Chemistry, 2017, 7(2):101-111. [15] Boddu V M, Krishnaiah A, Talbott J L, et al. Removal of Hexavalent Chromium from Wastewater Using a New Composite Chitosan Biosorbent[J]. Environmental Science & Technology, 2003, 37(19):4449-4456. [16] Gupta V K, Rastogi A, Nayak A. Adsorption Studies on the Removal of Hexavalent Chromium from Aqueous Solution Using a Low Cost Fertilizer Industry Waste Material[J]. Journal of Colloid & Interface Science, 2010, 342(1):135-141. [17] Kumar S, Loganathan V A, Gupta R B, et al. An Assessment of U(Ⅵ) Removal from Groundwater Using Biochar Produced from Hydrothermal Carbonization[J]. Journal of Environmental Management, 2011, 92(10):2504-2512. [18] Dong X, Ma L Q, Li Y. Characteristics and Mechanisms of Hexavalent Chromium Removal by Biochar from Sugar Beet Tailing[J]. Journal of Hazardous Materials, 2011, 190(1):909-915. [19] Ouyang X, Han Y T, Cao X, et al. Magnetic Biochar Combining Adsorption and Separation Recycle for Removal of Chromium in Aqueous Solution[J]. Water Science & Technology:A Journal of the International Association on Water Pollution Research, 2017, 75(5):1177-1184. [20] Qian L B, Liu S N, Zhang W Y, et al. Enhanced Reduction and Adsorption of Hexavalent Chromium by Palladium and Silicon Rich Biochar Supported Nanoscale Zero-Valent Iron[J]. Journal of Colloid and Interface Science, 2019, 533:428-436. [21] Zhu S, Huang X, Wang D, et al. Enhanced Hexavalent Chromium Removal Performance and Stabilization by Magnetic Iron Nanoparticles Assisted Biochar in Aqueous Solution:Mechanisms and Application Potential[J]. Chemosphere, 2018, 207:50-59. [22] 蒋旭涛, 迟杰. 铁改性生物炭对磷的吸附及磷形态的变化特征[J]. 农业环境科学学报, 2014, 33(9):1817-1822. Jiang Xutao, Chi Jie. Phosphorus Adsorption by and Forms in Fe-Modified Biochar[J]. Journal of Agro-Environment Science, 2014, 33(9):1817-1822. [23] Zhang K,Sun P,Zhang Y. Decontamination of Cr(Ⅵ) Facilitated Formation of Persistent Free Radicals on Rice Husk Derived Biochar[J]. Frontiers of Environmental Science & Engineering, 2019(2):85-93. [24] Chen S, Yue Q, Gao B, et al. Adsorption of Hexavalent Chromium from Aqueous Solution by Modified Corn Stalk:A Fixed-Bed Column Study[J]. Bioresource Technology, 2012, 113:114-120. [25] Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a Sorbent for Contaminant Management in Soil and Water:A Review[J]. Chemosphere, 2014, 99(3):19-33. [26] 刘莹莹, 秦海芝, 李恋卿, 等. 不同作物原料热裂解生物质炭对溶液中Cd2+和Pb2+的吸附特性[J]. 生态环境学报, 2012, 21(1):146-152. Liu Yingying, Qin Haizhi, Li Lianqing, et al. Adsorption Characteristics of Cd2+ and Pb2+in Solution by Biochar Pyrolyzed from Different Crop Feedstock[J]. Ecology and Environmental Sciences, 2012, 21(1):146-152. [27] Yu F, Peng L, Yanxin W, et al. Distribution and Speciation of Iron in Fe-Modified Biochars and Its Application in Removal of As(V), As(Ⅲ), Cr(Ⅵ), and Hg(Ⅱ):An X-Ray Absorption Study[J]. Journal of Hazardous Materials, 2020, 384. [28] 沈叔平. 水中六价铬和总铬的测定:二苯基碳酰二肼分光光度法[J]. 环境污染与防治, 1982(2):24-27. Shen Shuping. Determination of Hexavalent Chromium and Total Chromium in Water:Diphenylcarbohydrazide Spectrophotometry[J]. Environmental Pollution & Control, 1982(2):24-27. [29] Xiao X, Chen B L, Chen Z M, et al. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications:A Critical Review[J]. Environmental Science & Technology, 2018, 52(9):5027-5047. [30] 安增莉, 侯艳伟, 蔡超, 等. 水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J]. 环境化学, 2011, 30(11):1851-1857. An Zengli, Hou Yanwei, Cai Chao, et al. Adsorption Characteristics of Pb(Ⅱ) on Rice Straw Biochar[J]. Environmental Chemistry, 2011, 30(11):1851-1857. [31] Zhang M, Gao B, Varnoosfaderani S, et al. Preparation and Characterization of a Novel Magnetic Biochar for Arsenic Removal[J]. Bioresource Technology, 2013, 130(1):457-462. [32] Han Y, Cao X, Ouyang X, et al. Adsorption Kinetics of Magnetic Biochar Derived from Peanut Hull on Removal of Cr (Ⅵ) from Aqueous Solution:Effects of Production Conditions and Particle Size[J]. Chemosphere, 2016, 145:336-341. [33] Papassiopi N, Vaxevanidou K, Christou C, et al. Synthesis, Characterization and Stability of Cr(Ⅲ) and Fe(Ⅲ) Hydroxides[J]. Journal of Hazardous Materials, 2014, 264(9):490-497. [34] Baoliang C, Dandan Z, Lizhong Z. Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures[J]. Environmental Science & Technology, 2008, 42(14):5137-5143. [35] 常春, 王胜利, 郭景阳, 等. 不同热解条件下合成生物炭对铜离子的吸附动力学研究[J]. 环境科学学报, 2016, 36(7):2491-2502. Change Chun, Wang Shengli, Guo Jingyang, et al. Adsorption Kinetics and Mechanism of Copper Ion on Biochar with Different Pyrolysis Condition[J].Acta Scientiae Circumstantiae, 2016, 36(7):2491-2502. [36] Sharma M, Joshi M, Nigam S, et al. Zno Tetrapods and Activated Carbon Based Hybrid Composite:Adsorbents for Enhanced Decontamination of Hexavalent Chromium from Aqueous Solution[J]. Chemical Engineering Journal, 2019, 358:540-551. [37] Liu P, Ptacek C J, Blowes D W, et al. Aqueous Leaching of Organic Acids and Dissolved Organic Carbon from Various Biochars Prepared at Different Temperatures[J]. Journal of Environmental Quality, 2015, 44(2):684-695. [38] Gupta V K, Agarwal S, Saleh T A. Chromium Removal by Combining the Magnetic Properties of Iron Oxide with Adsorption Properties of Carbon Nanotubes[J]. Water Research, 2011, 45(6):2207-2212. [39] Kluepfel L, Keiluweit M, Kleber M, et al. Redox Properties of Plant Biomass-Derived Black Carbon (Biochar)[J]. Environmental Science & Technology, 2014, 48(10):5601-5611. [40] Prévoteau A, Ronsse F, Cid I, et al. The Electron Donating Capacity of Biochar Is Dramatically Underestimated[J]. Scientific Reports, 2016, 6:32870. [41] Rajapaksha A U, Alam M S, Chen N, et al. Removal of Hexavalent Chromium in Aqueous Solutions Using Biochar:Chemical and Spectroscopic Investigations[J]. Science of the Total Environment, 2018, 625:1567-1573. [42] Diao Z H, Xu X R, Chen H, et al. Simultaneous Removal of Cr(Ⅵ) and Phenol by Persulfate Activated with Bentonite-Supported Nanoscale Zero-Valent Iron:Reactivity and Mechanism[J]. Journal of Hazardous Materials, 2016, 316:186-193. |
[1] | 刘娜,王柳,邱华,Alberto Bento Charrua,王航,王锐. 生物炭催化过硫酸盐脱色偶氮染料金橙Ⅱ[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2000-2009. |
|