吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (6): 1804-1813.doi: 10.13278/j.cnki.jjuese.20190232

• 地质工程与环境工程 • 上一篇    

粉土及粉质黏土对静压沉桩桩端阻力影响机制现场试验

张明义1,2, 刘雪颖1, 王永洪1,2, 白晓宇1,2, 桑松魁1   

  1. 1. 青岛理工大学土木工程学院, 山东 青岛 266033;
    2. 山东省高等学校蓝色经济区工程建设与安全协同创新中心, 山东 青岛 266033
  • 收稿日期:2019-11-05 发布日期:2020-12-11
  • 通讯作者: 王永洪(1984-),男,讲师,博士,主要从事桩基础工程及岩土工程测试方面的研究,E-mail:hong7986@163.com E-mail:hong7986@163.com
  • 作者简介:张明义(1958-),男,教授,博士生导师,主要从事土力学及地基基础的试验、教学和研究工作,E-mail:zmy58@163.com
  • 基金资助:
    国家自然科学基金项目(51778312);山东省自然科学基金项目(ZR2016EEP06)

Field Test on Influencing Mechanism of Silty Soil and Silty Clay on Tip Resistance of Static Pressure Pile

Zhang Mingyi1,2, Liu Xueying1, Wang Yonghong1,2, Bai Xiaoyu1,2, Sang Songkui1   

  1. 1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China;
    2. Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao 266033, Shandong, China
  • Received:2019-11-05 Published:2020-12-11
  • Supported by:
    Supported by National Natural Science Foundation of China (51778312) and Natural Science Foundation of Shandong (ZR2016EEP06)

摘要: 为探讨在粉土及粉质黏土中桩端阻力随贯入深度的变化规律,通过在试验桩P1的桩端安装轮辐压力传感器,以及在试验桩P1、P2距桩端200 mm处安装光纤光栅(FBG)传感器,采用两种不同的测试技术全程监测了两根闭口预应力高强度混凝土(PHC)管桩现场贯入过程中的桩端阻力。试验结果表明:桩端阻力与土层的变化密切相关,土层越硬,桩端阻力越大,当桩端从粉质黏土层进入粉土层时,桩端阻力明显增大,粉土中的桩端阻力达到粉质黏土层的2倍;整个贯入过程中,同一土层不同位置的差异性对桩端阻力也存在较大影响,在距离地面1.50 m处,P1和P2桩FBG传感器桩端阻力的差值达到了89.29 kN,而在距离地面3.50~4.50 m处,两桩的桩端阻力则相差较小。

关键词: 静压桩, 轮辐压力传感器, FBG传感器, 桩端阻力, 现场试验

Abstract: In order to investigate the variation of pile end resistance with penetration depth in silt and silty clay, a spoke pressure sensor was installed at the pile end of the test pile P1, and a fiber grating sensor was installed at the test pile P1 and P2 200 mm away from the pile end. Two different test techniques were used to monitor the pile end resistance during the on-site penetration of two closed-end prestressed high-strength concrete pipe piles. The test results show that the resistance of the pile end is closely related to the change of the soil layer. The harder the soil layer is, the greater the resistance of the pile end is. When the pile end enters the silt layer from the silty clay layer, the pile end resistance increases significantly. The pile end resistance in the silt reaches twice of that of the silty clay layer. During the whole penetration process, due to the difference of soil layers at different locations, there is a certain difference between the pile end resistance of P1 and P2. The position difference of the same soil layer has a great influence on the pile end resistance. Below the ground 1.50 m, the difference of pile end resistance between P1 and P2 reached 89.29 kN; While below the ground 3.50-4.50 m, the difference between the pile end resistances of the two piles is small.

Key words: static pressure pile, spoke pressure sensor, FBG sensor, pile end resistance, field test

中图分类号: 

  • TU473
[1] Nicola A D E, Randolph M F. Centrifuge Modelling of Pipe Piles in Sand Under Axial Loads[J]. Geotechnique, 1999, 49(3):295-318.
[2] 刘清秉, 项伟, 崔德山, 等. 颗粒形状对砂土抗剪强度及桩端阻力影响机制试验研究[J]. 岩石力学与工程学报, 2011, 30(2):400-409. Liu Qingbing, Xiang Wei, Cui Deshan, et al. Experimental Study on Influence Mechanism of Particle Shape on Sand Shear Strength and Pile End Resistance[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2):400-409.
[3] 李林, 李镜培, 孙德安, 等. 考虑天然黏土应力各向异性的静压沉桩效应研究[J]. 岩石力学与工程学报, 2016, 35(5):1055-1064. Li Lin, Li Jingpei, Sun De'an, et al. Study on Static Pressure Pile Effect Considering Natural Clay Stress Anisotropy[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5):1055-1064.
[4] 李雨浓, 李镜培, 赵仲芳, 等. 层状地基静压桩贯入过程机理试验[J]. 吉林大学学报(地球科学版), 2010, 40(6):1409-1414. Li Yunong, Li Jingpei, Zhao Zhongfang,et al. Mechanism Test of Penetration Process of Static Pressure Piles in Layered Soils[J]. Journal of Jilin University (Earth Sciences Edition), 2010, 40(6):1409-1414.
[5] 马哲, 吴承霞, 肖昭然. 静压桩端阻力和侧阻力的颗粒流数值模拟[J]. 中国矿业大学学报, 2010, 39(4):622-626. Ma Zhe, Wu Chengxia, Xiao Zhaoran. Numerical Simulation of Particle Flow in Static Pressure Pile Side Resistance and Side Resistance[J]. Journal of China University of Mining & Technology, 2010, 39(4):622-626.
[6] 王浩, 周健, 邓志辉. 砂土中桩端阻力随位移发挥的内在机理研究[J]. 岩土工程学报, 2006, 28(5):587-593. Wang Hao, Zhou Jian, Deng Zhihui. Intrinsic Mechanism of Pile End Resistance with Displacement in Sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5):587-593.
[7] 周健, 邓益兵, 叶建忠, 等. 砂土中静压桩沉桩过程试验研究与颗粒流模拟[J]. 岩土工程学报, 2009, 31(4):501-507. Zhou Jian, Deng Yibing, Ye Jianzhong, et al. Experimental Study and Particle Flow Simulation of Static Piles in Sandy Soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4):501-507.
[8] 王常明, 常高奇, 吴谦, 等. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3):805-813. Wang Changming, Chang Gaoqi, Wu Qian, et al. Mechanism Static-Pressure Pipe Pile-Soil and Its Determination of Vertical Bearing Capacity[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3):805-813.
[9] Vesic A S. Expansion of Cavities in Infinite Soil Mass[J]. Journal of Soil Mechanics & Foundations Div, 1972, 98:265-290.
[10] 张明义, 邓安福. 预制桩贯入层状地基的试验研究[J]. 岩土工程学报, 2000, 22(4):490-492. Zhang Mingyi, Deng Anfu. Experimental Study on Jacked Precast Piles in Layered Soil[J]. Chinese Journal Geotechnical Engineering, 2000, 22(4):490-492.
[11] 施峰. PHC管桩荷载传递的试验研究[J]. 岩土工程学报, 2004, 26(1):95-99. Shi Feng. Experimental Study on Load Transfer of PHC Pipe Piles[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1):95-99.
[12] 寇海磊, 张明义. 基于桩身应力测试的静压PHC管桩贯入机制[J]. 岩土力学, 2014, 35(5):1295-1302. Kou Hailei, Zhang Mingyi. Static Pressure PHC Pipe Pile Penetration Mechanism Based on Pile Stress Test[J]. Rock and Soil Mechanics, 2014, 35(5):1295-1302.
[13] 曾辉. 土中结构表面压力测试技术的研究[J]. 土木工程学报, 1998, 31(2):59-68. Zeng Hui. Research on Surface Pressure Testing Technology of Structures in Soil[J]. Journal of Civil Engineering, 1998, 31(2):59-68.
[14] 秋仁东, 高文生, 孙军杰, 等. 光纤光栅传感技术在PHC管桩水平载荷试验中的应用[J] 岩石力学与工程学报, 2013, 32(12):2583-2589. Qiu Rendong, Gao Wensheng, Sun Junjie, at al. Application of Fiber Bragg Grating Sensor to Lateral Load Tests of PHC Piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12):2583-2589
[15] 建筑桩基技术规范:JGJ 94-2008[S]. 北京:中国建筑工业出版社, 2008. Technical Code for Building Pile Foundations:JGJ 94-2008[S]. Beijing:China Building Industry Press, 2008.
[16] Bond A J, Jardine R J. Shaft Capacity of Displacement Piles in High OCR Clay[J]. Geotechnique, 1995, 45(1):3-23.
[17] 胡永强, 汤连生, 黎志中. 端承型静压桩沉桩贯入过程中桩侧阻力变化规律及其时效性试验研究[J]. 中山大学学报(自然科学版), 2015, 54(1):130-135. Hu Yongqiang, Tang Liansheng, Li Zhizhong. Experimental Study on Variation and Time Effect of Shaft Resistance of Jacked Pile Installation[J]. Journal of Sun Yat-Sen University (Natural Science Edition), 2015, 54(1):130-135.
[18] 毕庆涛, 肖昭然, 丁树云, 等. 静压桩压入过程的数值模拟[J]. 岩土工程学报, 2011, 33(增刊2):74-77. Bi Qingtao, Xiao Zhaoran, Ding Shuyun,et al. Numerical Simulation of the Indentation Process of Static Pressure Piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Sup.2):74-77.
[19] 张明义. 静力压入桩的研究与应用[M]. 北京:中国建材工业出版社, 2004. Zhang Mingyi. Research and Application on the Jacked Piles[M]. Beijing:China Building Material Industry Press, 2004.
[1] 李雨浓, 李镜培, 赵仲芳, 朱火根. 层状地基静压桩贯入过程机理试验[J]. J4, 2010, 40(6): 1409-1414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!