吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1054-1063.doi: 10.13278/j.cnki.jjuese.20200181

• 地质与资源 • 上一篇    下一篇

普朗斑岩型铜矿床成矿元素多重分形特征及其矿化强度指示

万丽1,2, 刘慧1, 曾祥健1   

  1. 1. 广州大学数学与信息科学学院, 广州 510006;
    2. 数学与交叉科学广东普通高校重点实验室(广州大学), 广州 510006
  • 收稿日期:2020-12-01 出版日期:2021-07-26 发布日期:2021-08-02
  • 作者简介:万丽(1961-),女,教授,博士,主要从事数学地质及矿产资源评价等方面的研究,E-mail:wanli@gzhu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41872246);广州大学研究生创新研究资助计划(2020GDJC-M33)

Multifractal Characteristics of Metallogenic Elements and Their Implications to the Mineralization Intensity in Pulang Porphyry Copper Deposit

Wan Li1,2, Liu Hui1, Zeng Xiangjian1   

  1. 1. School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China;
    2. Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes (Guangzhou University), Guangdong 510006, China
  • Received:2020-12-01 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (41872246) and Innovation Research for the Postgraduate of Guangzhou University (2020GDJC-M33)

摘要: 成矿元素品位的变化受控于长期地质作用过程,具有较强的非线性特征,定量刻画其变化特征有助于深入理解成矿过程,并为找矿预测提供理论依据。运用多重分形去趋势移动均值(MFDMA) 法,分析云南普朗斑岩型铜矿床4号勘探线钻孔Cu元素品位的多重分形特征及其对矿化强度的指示意义。结果显示:所有钻孔Cu元素品位具有多重分形特征,且不同矿化等级的元素分布存在局部奇异性差异,多重分形强度随矿化强度等级减弱而增加;这些特征指示在钾硅化带—带内侧强矿化钻孔的高品位相对聚集,而带外侧角岩化—青磐岩化带的高品位相对分散;通过数据随机重排技术推测Cu品位多重分形结构奇异性差异是由其分布概率密度和长相关性共同作用引起,后者的作用贡献大于前者。

关键词: 多重分形去趋势移动均值(MFDMA)法, 多重分形标度, 奇异性, 成矿元素, 矿化强度, 普朗斑岩型铜矿床

Abstract: The variation of the ore-forming element grade, determined by the geological process, have strong random and nonlinearity features. Identifying the characteristics of ore-forming elements is of significance for better understanding the ore-forming process and mineral prospecting. In this paper, the multifractal detrending moving average (MFDMA) model is applied to describe the multifractal characteristics of Cu element distributions and their implications to mineralization intensity in the No.4 exploration line borehole from Pulang porphyry copper deposit in Yunnan, China. The results reveal that the sequence of Cu in all boreholes exhibits multifractal scaling and local singularity differences in different mineralization grades. The multifractal strength increases with the decrease of mineralization intensity. The high grade Cu of strongly mineralized boreholes is relatively enriched in the inner side of the potassium silicification-sericitization zone, while is relatively dispersed in the outer hornization-qingpanlithalization zone. Moreover, hrough analyzing the data that are arranged in random order in the shuffling procedure, we find that the multifractality structure of Cu grades series is due to both the fat-tail probability density function and long-range correlation, and the latter is more significant than the former.

Key words: multifractal detrended moving average (MFDMA) method, multifractal scaling, singularity, metallogenic element, mineralization intensity, Pulang porphyry copper deposit

中图分类号: 

  • P618.41
[1] Richards J P, Spell T, Rameh E A. et al. High Sr/Y Magmas Reflect Arcmaturity, High Magmatic Water Content, and Porphyry Cu±Mo±Au Potential:Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan[J]. Economic Geology, 2012, 107(2):295-332.
[2] 赵鹏大.定量地学方法及应用[M]. 北京:高等教育出版社,2004:1-10. Zhao Pengda. Quantitative Geologic Method and Its Application[M]. Beijing:Higher Education Press, 2004:1-10.
[3] 成秋明. 地质异常的奇异性度量与隐伏源致矿异常识别[J]. 地球科学:中国地质大学学报,2011,36(2):307-316. Cheng Qiuming. Singularity Modeling of Geo-Anomalies and Recognition of Anomalies Caused by Buried Sources Earth[J]. Earth Science:Journal of China University of Geosciences,2011, 36(2):307-316.
[4] Cheng Qiuming, Agterberg Frits. Singularity Analysis of Ore-Mineral and Toxic Trace Elements in Stream Sediments[J]. Computers & Geosciences, 2009, 35:234-244.
[5] Cheng Qiuming. Multifractal Modelling and Spectrum Analysis:Methods and Applications to Gamma Ray Spectrometer Data from Southwestern Nova Scotia,Canada[J]. Science in China:Series D:Earth Sciences, 2006, 49(3):283-294.
[6] 万丽,刘欢,杨林,等.成矿元素巨量聚集的混沌机制:斑岩型和构造蚀变岩型矿床例析[J]. 岩石学报,2015,31(11):3455-3465. Wan Li, Liu Huan, Yang Lin, et al. Chaotic Mechanisms of the Ore-Forming Element Accumulation:Case Study of Porphyry and Disseminated-Veinlet Gold Deposits[J]. Acta Petrologica Sinica, 2015, 31(11):3455-3465.
[7] Wan Li, Zhu Yongqian, Deng Xiaocheng. Multifractal Characteristics of Gold Grades Series in the Dayingezhuang Deposit, Jiaodong Gold Province, China[J]. Earth Science Informatics, 2015, 8(4):843-851.
[8] 万丽,邓小成,王庆飞,等. MF-DFA方法与成矿元素分布特征:以山东大尹格庄金矿为例[J]. 中国矿业大学学报, 2012, 41(1):133-138. Wan Li, Deng Xiaocheng, Wang Qingfei, et al. Method of MF-DFA and Distribution Characteristics of Metallogenic Elements:Examplefrom the Dayingezhuang Gold Deposit, China[J]. Journal of China University of Mining Technolgy, 2012, 41(1):133-138.
[9] 万丽,胡序懿,邓小成. 成矿元素含量序列的近似熵分析及矿化识别[J]. 中国矿业大学学报,2014,43(2):345-350. Wan Li,Hu Xuyi, Deng Xiaocheng. Approximate Entropy Analysis of Metallogenic Element Content Sequences and Identification of Mineral Intensity:A Case Study of Dayingezhuang Gold Deposit[J]. Journal of China University of Mining and Technology,2014,43(2):345-350.
[10] Deng Jun, Wang Qingfei, Wan Li, et al. Random Difference of the Trace Element Distribution in Skarn and Marbles from Shizishan Orefield, Anhui Province,China[J]. Journal of China University of Geosciences, 2008, 19(4):319-326.
[11] Deng Jun, Wang Qingfei, Wan Li, et al. Self-Similar Fractal Analysis of Gold Mineralization of Dayingezhuang Disseminated-Veinlet Deposit in Jiaodong Gold Province, China[J]. Journal of Geochemical Exploration, 2009, 102(2):95-102.
[12] 李忠潭,薛林福,冉祥金,等. 基于卷积神经网络的智能找矿预测方法:以甘肃龙首山地区铜矿为例[J]. 吉林大学学报(地球科学版),2021,51. doi:10.13278/j.cnki.jjuese.20210081. Li Zhongtan, Xue Linfu, Ran Xiangjin, et al. Intelligent Prospect Prediction Method Based on Convolutional Neural Network:A Case Study of Copper Deposits in the Longshoushan Area, Gansu Province[J]. Journal of Jilin University (Earth Science Edition),2021,51. doi:10.13278/j.cnki.jjuese.20210081.
[13] Turcotte D L. Fractals and Chaos in Geology and Geophysics[M]. Cambridge:Cambridge University Press, 1997:100-113.
[14] Schumann A Y, Kantelhardt J W. Multifractal Moving Average Analysis and Test of Multifractal Model with Tuned Correlations[J]. Physica A:Statistical Mechanics and Its Applications, 2011, 390(14):2637-2654.
[15] Xiong Gang, Zhang Shuning, Zhao Huichang. Multifractal Spectrum Distribution Based on Detrending Moving Average[J]. Chaos, Solitons & Fractals, 2014, 65:97-110.
[16] Chen Feier, Tian Kang, Ding Xiaoxu, et al. Finite-Size Effect and the Components of Multifractality in Transport Economics Volatility Based on Multifractal Detrending Mmoving Average Method[J]. Physica A, 2016, 462:1058-1066.
[17] Zhang Chen, Ni Zhiwei, Ni Liping, et al. Asymmetric Multifractal Detrending Moving Average Analysis in Time Series of PM2.5 Concentration[J]. Physica A, 2016, 457:322-330.
[18] Mali Provash, Mukhopadhyay Amitanha, Singh Gurmukh. Multifractal Detrended Mmoving Average Analysis of Particle Density Functions in Relativistic Nuclear Collisions[J]. Physica A, 2016, 450:323-332.
[19] 张佳佳,王建,李研,等. 黑龙江多宝山-铜山斑岩铜(钼)矿床绿帘石矿物成分特征及其成矿指示意义[J]. 世界地质,2019,38(2):362-377. Zhang Jiajia, Wang Jian, Li Yan, et al. Mineral Composition of Epidote in Duobaoshan-Tongshan Porphyry Cu-Mo Deposit,Heilongjiang and Its Implications for Mineralization[J]. Global Geology, 2019,38(2):362-377.
[20] 侯增谦,杨志明. 中国大陆环境典型斑岩型矿床成矿规律和找矿模型研究进展[J]. 矿床地质, 2012,31(4):645-646. Hou Zengqian, Yang Zhiming. Progress in Metallogenic Regularity and Prospecting Models of Typical Porphyry Deposits in Chinese Mainland[J]. Minreal Deposits, 2012, 31(4):645-646.
[21] Sun Weidong, Huang Ruifan, Li He, et al. Porphyry Deposits and Oxidized Magmas[J]. Ore Geology Reviews, 2014, 65:97-131.
[22] Liang Huaying, Sun Weidong, Su Wenchao, et al. Porphyry Copper-Gold Mineralization at Yulong,China,Promoted by Decreasing Redox Potential During Magnetite Alteration[J]. Economic Geology, 2009, 104:587-596.
[23] Gu Gaofeng, Zhou Weixing. Detrending Moving Average Algorithm for Multifractals[J]. Physical Review E, 2010, 82(1):011136.
[24] Agterberg Frits. New Applications of the Model of de Wijs in Regional Geochemistry[J]. Mathemtical Geology, 2007, 39(1):1-25.
[25] Deng Jun, Wang Qingfei, Li Gongjian, et al. Tethys Tectonic Eevolution and Its Bearing on the Distribution of Important Mineral Deposits in the Sanjiang Region,SW China[J]. Gondwana Research, 2014, 26(2):419-437.
[26] Deng Jun, Wang Qingfei, Li Gongjian, et al. Cenozoic Tectono-Magmatic and Metallogenic Processes in the Sanjiang Region, Southwestern China[J]. Earth-Science Reviews, 2014, 138:268-299.
[27] Deng Jun, Wang Qingfei, Li Gongjian, et al. Structural Control and Genesis of the Oligocene Zhenyuan Orogenic Gold Deposit, SW China[J]. Ore Geology Reviews, 2015, 65:42-54.
[28] 李文昌, 曾普胜. 云南普朗超大型斑岩铜矿特征及成矿模型[J]. 成都理工大学学报(自然科学版), 2007,34(4):436-446. Li Wenchang, Zeng Pusheng. Characteristics and Metallogenic Model of Pulang Superlarge Porphyry Copper Deposit in Yunnan, China[J]. Journal of Chengdu University of Technology (Sciencec & Technology Edition), 2007,34(4):436-446.
[29] 李文昌,刘学龙,曾普胜,等. 云南普朗斑岩型铜矿成矿岩体的基本特征[J]. 中国地质,2011,38(2):403-414. Li Wenchang, Liu Xuelong, Zeng Pusheng, et al. The Characteristics of Metallogenic Rock in the Pulang Porphyry Copper Deposit in Yunnan,China[J]. Grology in China, 2011,38(2):403-414.
[30] 胡清华,张世权,尹静,等. 中甸普朗斑岩型铜矿床围岩蚀变初步研究[J]. 矿物岩石地球化学通报, 2010, 29(2):192-201. Hu Qinghua, Zhang Shiquan, Yin Jing, et al. A Study of Wall-Rock Alteration in the Zhongdian Pulang Porphyry Copper Deposit[J]. Bulletin of Minearlogy, Petrology and Geochemistry, 2010, 29(2):192-201.
[31] Kantelhardt Jan W, Zschiegner Stephan A, Koscielny-Bunde E, et al. Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series[J]. Physica A, 2002, 316:87-114.
[1] 万丽,邓小成,王庆飞,刘欢. 基于Hurst指数的矿化强度识别-以山东大尹格庄金矿为例[J]. 吉林大学学报(地球科学版), 2013, 43(1): 87-92.
[2] 贾大成,姜涛,陈圣波,包国章,高文,张潇,毛永新. 大兴安岭多宝山铜成矿区植物地球化学特征及找矿意义[J]. 吉林大学学报(地球科学版), 2013, 43(1): 76-86.
[3] 娄德波, 肖克炎, 左仁广, 贾金典. 奇异性填图技术在新疆东天山黄山—镜儿泉镍铜成矿带中的应用[J]. J4, 2012, 42(3): 705-714.
[4] 范森葵, 王登红, 梁婷, 吴德成, 韦可利, 周鸿军, 黄惠明, 屈文俊. 广西大厂96号矿体的成矿元素地球化学特征与成因[J]. J4, 2010, 40(4): 781-790.
[5] 张金会, 孙建国. 三维直流电场积分方程中奇异性的近似处理[J]. J4, 2009, 39(5): 923-928.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[2] 王谦,吴志芳, 张汉泉,莫修文. 随机分形在刻划储层非均质特性中的应用[J]. J4, 2005, 35(03): 340 -0345 .
[3] 杨晓平,李仰春,柳 震, 汪 岩,王洪杰. 黑龙江东部鸡西盆地构造层序划分与盆地动力学演化[J]. J4, 2005, 35(05): 616 -621 .
[4] 薛永超, 程林松, 付 广. 大庆长垣以东地区登二段泥质岩盖层封气能力综合评价[J]. J4, 2005, 35(05): 626 -631 .
[5] 刘菁华,王祝文,刘树田,王晓丽. 城市活动断裂带的土壤氡、汞气评价方法[J]. J4, 2006, 36(02): 295 -0297 .
[6] 刘祥. 长白山火山历史上最大火山爆发火山碎屑物层序与分布[J]. J4, 2006, 36(03): 313 -318 .
[7] 郑坤,刘修国,吴信才,杨慧. 顾及拓扑面向实体的三维矢量数据模型[J]. J4, 2006, 36(03): 474 -479 .
[8] 尹 潘,胡光道. 基于GDW的空间数据融合[J]. J4, 2006, 36(03): 486 -490 .
[9] 孔庆莹,程日辉,胡艳飞. 周口坳陷谭庄-沈丘凹陷早白垩世沉积相类型和层序地层特征[J]. J4, 2006, 36(04): 557 -562 .
[10] 迟宝明,易树平,李治军,周彦章. 大连地区水资源人工调控研究[J]. J4, 2005, 35(05): 632 -635 .