吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1872-1880.doi: 10.13278/j.cnki.jjuese.20200195

• 地球探测与信息技术 • 上一篇    下一篇

海洋可控源电磁数据的畸变校正与合成孔径源信号增强方法

汪轩1, 沈金松1, 王志刚2, 孙卫斌2   

  1. 1. 中国石油大学(北京)地球物理学院, 北京 102249;
    2. 中国石油集团东方地球物理勘探有限公司, 河北 涿州 072750
  • 收稿日期:2020-08-29 出版日期:2021-11-26 发布日期:2021-11-24
  • 作者简介:汪轩(1990-),男,博士研究生,主要从事电磁场正反演研究,E-mail:waangxuuaan@163.com
  • 基金资助:
    国家自然科学基金项目(41574124);中国石油天然气集团有限公司科学研究与技术开发项目(2017D-3505)

Distortion Correction and Synthetic-Aperture-Source Signal Enhancement Method of Marine Controlled-Source Electromagnetic Data

Wang Xuan1, Shen Jinsong1, Wang Zhigang2, Sun Weibin2   

  1. 1. College of Geophysics, China University of Petroleum, Beijing 102249, China;
    2. Bureau of Geophysical Prospecting INC., China National Petroleum Corporation, Zhuozhou 072750, Hebei, China
  • Received:2020-08-29 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the National Natural Science Foundation of China (41574124) and Technology Project of China National Petroleum Corporation (2017D-3505)

摘要: 我国对海洋可控源电磁勘探方法的研究起步较晚,目前海洋采集数据的处理流程较为单一。在经典的数据处理流程中,仍缺乏针对由存储设备读写、船速和长线源源距变化等造成的畸变电磁响应的数据处理方法。本文针对存储设备运行造成的规则干扰提出一种基于功率谱分析的自动压制方法;对于船速和长线源源距变化的干扰建立了分时窗畸变校正流程;最后,结合合成孔径源技术进一步增强了有效信号的强度。实测数据处理结果表明,文中提出的畸变校正与信号增强方法,在提高电磁数据信噪比的同时,增强了来自海底地层的有效信号幅度。

关键词: 海洋可控源电磁法, 预处理, 信号修正, 合成孔径

Abstract: Due to the late start of marine controlled-source electromagnetic (MCSEM) method in China,the current processing flow of marine EM data is relatively simple. In these classic data processing procedures, there is still a lack of processing methods for distorted EM data caused by reading and writing to storage device, ship speed, and long-line source moment changes. In this study, a spectrogram-based automatic suppression method was proposed for regular noise caused by storage device operation, the corresponding window-based distortion correction procedures were established for the interference of ship speed and long-line source moment changes, and finally, the synthetic aperture source technology was applied to further enhance the strength of the effective signal. The results of real field data processing indicate that by using these distortion correction and signal enhancement methods, the signal-to-noise ratio of EM data can be increased while enhancing the effective signal amplitude from the seafloor.

Key words: marine controlled-source electromagnetics, preprocessing, signal correction, synthetic aperture

中图分类号: 

  • P631
[1] Ellingsrud S, Eidesmo T, Johansen S, et al. Remote Sensing of Hydrocarbon Layers by Seabed Logging (SBL):Results from a Cruise Offshore Angola[J]. Geophysics, 2002, 21(10):972-982.
[2] Constable S, Srnka L J. An Introduction to Marine Controlled-Source Electromagnetic Methods for Hydrocarbon Exploration[J]. Geophysics, 2007, 72:3-12.
[3] 张文强, 殷长春, 刘云鹤, 等.基于场延拓的海洋可控源电磁正演模拟及各向异性特征识别[J].吉林大学学报(地球科学版),2019,49(2):578-590. Zhang Wenqiang, Yin Changchun, Liu Yunhe, et al.Field Continuation for MCSEM Forward Modeling and Identification of Anisotropic Media[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2):578-590.
[4] Constable S. Ten Years of Marine CSEM for Hydrocarbon Exploration[J]. Geophysics, 2010, 75:A67-A81.
[5] Behrens J. The Detection of Electrical Anisotropy in 35 Ma Pacific Lithosphere:Results from a Marine Controlled-Source Electromagnetic Survey and Implications for Hydration of the Upper Mantle[D]. San Diego:University of California, 2005.
[6] Lu X Y, Willen D, Zhang J, et al. Marine CSEM Data Processing Techniques[C]//2006 SEG Annual Meeting. Houston:Society of Exploration Geophysicists, 2006:704-708.
[7] Myer D, Constable S, Key K. Broad-Band Waveforms and Robust Processing for Marine CSEM Surveys[J]. Geophysical Journal International, 2001,184(2):689-698.
[8] Mattson J, Lindqvist P, Juhasz R, et al. Noise Reduction and Error Analysis for a Towed EM System[C]//2012 SEG Annual Meeting. Houston:Society of Exploration Geophysicists, 2012:1-5.
[9] Maclennan K, Li Y G. Denoising Multicomponent CSEM Data with Equivalent Source Processing Techniques[J]. Geophysics, 2013, 78(3):E125-E135.
[10] 余刚, 孙卫斌, 何展翔, 等. 打破国外深海可控源电磁勘探技术垄断促进我国海洋资源勘探开发能力提升:国家863计划"深水可控源电磁勘探系统开发"课题成果[J].科技成果管理与研究, 2018(6):73-76. Yu Gang, Sun Weibin, He Zhanxiang, et al. Breaking the Monopoly of Foreign Deep-Sea Controllable Source Electromagnetic Exploration Technology and Promoting the Improvement of My Country's Marine Resource Exploration and Development Capabilities:The National 863 Plan "Deep-Water Controllable Source Electromagnetic Exploration System Development" Project Achievement[J]. Management and Research on Scientific & Technological Achievements, 2018(6):73-76.
[11] 李予国, 段双敏. 海洋可控源电磁数据预处理方法研究[J]. 中国海洋大学学报(自然科学版), 2014, 44(10):106-112. Li Yuguo, Duan Shuangmin. Data Preprocessing of Marine Controlled-Source Electromagnetic Data[J]. Periodical of Ocean University of China, 2014, 44(10):106-112.
[12] 段双敏. 海洋可控源电磁方法在多瑙河古三角洲天然气水合物勘探中的应用研究[D]. 青岛:中国海洋大学, 2020. Duan Shuangmin. Research on the Application of Marine Controlled Source Electromagnetic Method in the Exploration of Natural Gas Hydrate in the Danube Paleo-Delta[D]. Qingdao:Ocean University of China,2020.
[13] 王铭, 景建恩, 邓明, 等. 海洋可控源电磁数据可视化预处理软件开发[J]. 地球物理学进展, 2016, 31(4):1845-1851. Wang Ming, Jing Jian'en, Deng Ming, et al. Development of Visualized Software for Data Preprocessing of Marine Controlled-Source Electromagnetic Method[J]. Progress in Geophysics, 2016, 31(4):1845-1851.
[14] 冯一帆. 海洋可控源电磁现场数据预处理软件开发[D].北京:中国地质大学(北京), 2019. Feng Yifan. Development of Electromagnetic Field Data Preprocessing Software for Marine Controllable Source[D]. Beijing:China University of Geosciences (Beijing), 2019.
[15] Zhang P, Deng M, Jing J N, et al. Marine Controlled-Source Electromagnetic Method Data De-noising Based on Compressive Sensing[J]. Journal of Applied Geophysics, 2020,177:104011.
[16] 林昕, 魏文博, 景建恩, 等. 提高海洋可控源电磁法信噪比的方法研究[J]. 地球物理学进展, 2009, 24(3):1047-1050. Lin Xin, Wei Wenbo, Jing Jian'en, et al. Study on Improving MCSEM Signal-To-Noise Ratio[J]. Progress in Geophysics, 2009, 24(3):1047-1050.
[17] 于彩霞. 海洋可控源电磁法数据处理研究[D]. 北京:中国地质大学(北京), 2010. Yu Caixia. Study on Marine Controlled-Source Electromagnetic Signal Processing[D]. Beijing:China University of Geosciences (Beijing), 2010.
[18] 刘宁. 海洋可控源电磁数据典型预处理及几种去噪方法研究[D].长春:吉林大学, 2015. Liu Ning. Preprocessing and Research of Denoising Methods for Marine Controlled Source Electromagnetic Data[D]. Changchun:Jilin University, 2015.
[19] 鲁瑶, 孙卫斌, 周亚朋, 等. GMECS系统海洋可控源电磁预处理模块[J].石油工业计算机应用, 2019, 27(增刊1):23-25. Lu Yao, Sun Weibin, Zhou Yapeng, et al. GMECS System Marine Controlled Source Electromagnetic Preprocessing Module[J]. Computer Applications of Petroleum, 2019, 27(Sup.1):23-25.
[20] Constable S C, Cox C S. Marine Controlled-Source Electromagnetic Sounding:2:The PEGASUS Experiment[J]. Journal of Geophysical Research Solid Earth, 1996, 101(B3):5519-5530.
[21] Fan Y R, Snieder E, Slob J, et al. Synthetic Aperture Controlled Source Electromagnetics[J]. Geophysical Research Letters, 2010, 37(13):L13305.
[22] Fan Y R, Snieder E, Slob J, et al. Steering and Focusing Diffusive Fields Using Synthetic Aperture[J]. Europhysics Letters, 2011, 95(3):34006.
[23] Fan Y R, Snieder E, Slob J, et al. Increasing the Sensitivity of Controlled-Source Electromagnetics with Synthetic Aperture[J]. Geophysics, 2012, 77(2):E135.
[24] Fan Y, Snieder R, Slob E, et al. Synthetic Aperture Controlled Source Electromagnetics[J]. Geophysical Research Letters, 2010, 37:L13305. doi:10.1029/2010GL043981.
[25] Kennedy J. Encyclopedia of Machine Learning[M]. Boston:Springer, 2011.
[26] Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proceedings of the IEEE International Joint Conference on Neural Networks. Perth:IEEE, 1995:1942-1948. doi:10.1109/ICNN.1995.488968.
[27] van den Bergh F. An Analysis of Particle Swarm Optimizers[D]. Pretoria:University of Pretoria, 2002.
[1] 房春生, 王殿升, 推玥, 高晗博, 王菊. 电镀废水改进的CAFE处理工艺设计及案例[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1862-1869.
[2] 黄盖先, 田波, 周云轩, 袁庆. 滨海湿地物联网观测数据预处理方法[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1805-1814.
[3] 张文强, 殷长春, 刘云鹤, 张博, 任秀艳. 基于场延拓的海洋可控源电磁正演模拟及各向异性特征识别[J]. 吉林大学学报(地球科学版), 2019, 49(2): 578-590.
[4] 胥为, 周云轩, 沈芳, 田波, 于鹏. 基于Sentinel-1A雷达影像的崇明东滩芦苇盐沼植被识别提取[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1192-1200.
[5] 王泰涵, 黄大年, 马国庆, 李野, 林松. 基于并行预处理算法的三维重力快速反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 384-393.
[6] 贲放, 刘云鹤, 黄威, 徐驰. 各向异性介质中的浅海海洋可控源电磁响应特征[J]. 吉林大学学报(地球科学版), 2016, 46(2): 581-593.
[7] 殷长春, 刘云鹤, 翁爱华, 贾定宇, 贲放. 海洋可控源电磁法空气波研究现状及展望[J]. J4, 2012, 42(5): 1506-1520.
[8] 李滦宁, 梁宏伟, 赵淑杰, 刘娟丽, 陈博, 王岚, 崔玉果, 于长江. 金铜精矿中性催化加压浸出预处理工艺[J]. J4, 2011, 41(4): 1186-1191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .