吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1381-1390.doi: 10.13278/j.cnki.jjuese.20200238

• 岩土防灾与减灾 • 上一篇    下一篇

动、静载环境下界面土直剪试验

曹海莹1,2, 郭毅磊1,2, 杜量3   

  1. 1. 燕山大学河北省土木工程绿色建造与智能运维重点实验室, 河北 秦皇岛 066004;
    2. 燕山大学建筑工程与力学学院, 河北 秦皇岛 066004;
    3. 首钢地质勘察院北京爱地地质勘查基础工程公司, 北京 100043
  • 收稿日期:2020-10-04 出版日期:2021-09-26 发布日期:2021-09-29
  • 作者简介:曹海莹(1979-),男,教授,博士,主要从事岩土工程领域的科研与教学研究,E-mail:chyysu79@126.com
  • 基金资助:
    河北省自然科学基金项目(E2020203168);河北省高等学校科学技术研究项目(ZD2020330);秦皇岛市科学技术研究与发展计划项目(202005A005)

Direct Shear Test of Soil Interfacial Layer Under Dynamic and Static Load

Cao Haiying1,2, Guo Yilei1,2, Du Liang3   

  1. 1. Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, Hebei, China;
    2. School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004, Hebei, China;
    3. Beijing Aidi Geological Investigation Foundation Construction Company, Beijing 100043, China
  • Received:2020-10-04 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the Natural Science Foundation of Hebei Province (E2020203168), the Science and Technology Research Project of Hebei Universities (ZD2020330) and the Science and Technology Research and Development Project of Qinhuangdao City(202005A005)

摘要: 为了探究土体界面土的力学性质及其变化规律,以粉土、粉质黏土和碎石土作为试验材料,以法向应力大小、上下土层类型、界面处理方式、动载环境、静载环境和动载作用时长等作为试验变量因素,运用正交试验设计方法对不同类型的原状土和重塑土试样进行室内直剪试验,得到了土体界面土的剪力-位移本构曲线,根据曲线中的峰值抗剪强度计算出了能够反映界面土抵抗黏性破坏能力的黏结系数。试验结果表明:粉土的黏结系数小于粉质黏土;界面土的抗剪强度与上下土层的结合类型相关,界面土的粗糙度越大,界面土处的土体接触越充分,则界面土的力学性质越好;随着动载作用时间的增加,土体界面土的抗剪强度会有所下降;并且,界面土的力学性质与上下土层性质之间有一定的联系。

关键词: 界面土, 直剪试验, 动载环境, 静载环境, 本构曲线, 重塑土

Abstract: To explore the mechanical properties of soil interfacial layers and their change law, the silt, silty clay, and gravel soil were taken as the experimental material, and the normal stress, soil type, interface treatment, load type, and effective time of dynamic load were taken as test variable factors. By using the orthogonal experimental design method, the indoor direct shear test of different undisturbed and remolded soil samples were carried out, and the shear force-displacement constitutive curves of soil interfacial layers were obtained. The bond coefficient of the interfacial layer was calculated according to the peak shear strength in these curves, which is related to the ability of resisting distruction. The experimental results show that the bond coefficient of silt is smaller than that of silty clay, and the strength of the soil interfacial layer is related to the combination type of the upper and lower soil layers;The greater the roughness of the interfacial layer and the more adequate the soil contact, the better the mechanical properties of the interfacial layer;With the increase of the acting time of the dynamic load, the strength of the soil interfacial layer decreases;The mechnanical properties of the interfacial layer are connected with the properties of the upper and lower soil layers.

Key words: soil interfacial layer, direct shear test, dynamic load, static load, constitutive curve, remolded soil

中图分类号: 

  • TU411.7
[1] 黄博, 史海栋, 凌道盛, 等. 两种粉质黏土的动、静强度特性对比研究[J]. 岩土力学, 2012, 33(3):665-673. Huang Bo, Shi Haidong, Ling Daosheng, et al. Comparisons of Static and Dynamic Behaviors Between Two Silty Clays by Test[J]. Rock and Soil Mechanics, 2012, 33(3):665-673.
[2] 曹海莹, 刘云飞, 李慧剑, 等. 上覆硬壳层软土路基土层界面动力响应特征及工程应用[J]. 公路交通科技, 2015, 32(7):33-40. Cao Haiying, Liu Yunfei, Li Huijian, et al. Dynamic Response Characteristic of Interface of Layer of Soft Soil Subgrade with Dry Crust Covering and Its Engineering Application[J]. Journal of Highway and Transportation Research and Development, 2015, 32(7):33-40.
[3] 黄茂松, 边学成, 陈育民, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2020, 53(8):64-86. Huang Maosong, Bian Xuecheng, Chen Yumin, et al. Soil Dynamics and Geotechnical Earthquake Engineering[J]. China Civil Engineering Journal, 2020, 53(8):64-86.
[4] 殷殷, 张丙印, 袁会娜, 等. 接触面直剪试验及数值模拟分析[J]. 水利发电学报, 2018, 37(6):84-92. Yin Yin, Zhang Bingyin, Yuan Huina, et al. Experimental and Numerical Study on Interface Direct Shear Tests[J]. Journal of Hydroelectric Engineering, 2018, 37(6):84-92.
[5] 闫澍旺, 林澍, 贾沼霖, 等. 海洋土与钢桩界面剪切强度的大型直剪试验研究[J]. 岩土工程学报, 2018, 40(3):495-501. Yan Shuwang, Lin Shu, Jia Zhaolin, et al. Large-Scale Direct Shear Tests on Shear Strength of Interface Between Marine Soil and Steel Piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3):495-501.
[6] Wu S, Chen H, Zhang J, et al. Effects of Interlayer Bonding Conditions Between Semi-Rigid Base Layer and Asphalt Layer on Mechanical Responses of Asphalt Pavement Structure[J]. International Journal of Pavement Research and Technology, 2017(5):274-281.
[7] Wang X D, Pei Q Q, Guo Q L, et al. Stress Mechanism for the Rammed Layer Interfaces of Earthen Heritage Sites with Different Treatments[J]. Journal of Cultural Heritage, 2019, 30:110-119.
[8] 毕冬宾, 尤志嘉, 刘群, 等. 土层锚固体复合界面单元形式及力学效应研究[J]. 岩土力学, 2017, 38(1):277-283. Bi Dongbin, You Zhijia, Liu Qun, et al. Soil Anchor Solid Composite Interface Elenment Form and Mechanical Effects[J]. Rock and Soil Mechanics, 2017, 38(1):277-283.
[9] Kock I, Huhn K. Influence of Particle Shape on the Frictional Strength of Sediments:A Numerical Case Study[J]. Sedimentary Geology, 2007, 196(14):217-233.
[10] 张嘎, 张建民. 粗粒土与结构接触面统一本构模型及试验验证[J]. 岩土工程学报, 2005, 27(10):1175-1179. Zhang Ga, Zhang Jianmin. Unified Modeling of Soil-Structure Interface and Its Test Confirmation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10):1175-1179.
[11] Beskou N D, Theodorakopoulos D D. Dynamic Effects of Moving Loads on Road Pavements:A Review[J]. Soil Dynamics and Earthquake Engineering, 2011, 31:547-567.
[12] Beskou N D, Chen Y Y, Qian J. Dynamic Response of an Elastic Plate on a Cross-Anisotropic Elastic Half-Plane to a Load Moving on Its Surface[J]. Transportation Geotechnics, 2018, 14:98-106.
[13] 夏红春, 周国庆, 杜泽超. 土-地下结构界面层效应试验研究[J]. 中国矿业大学学报, 2011, 40(6):846-851. Xia Hongchun, Zhou Guoqing, Du Zechao. Experimental Study of the Soil-Undergroud Structure Interfacial Layer Effect[J]. Journal of China University of Mining & Technology, 2011, 40(6):846-851.
[14] 孙厚超, 杨平, 王国良, 等. 冻土与结构接触界面层力学试验系统研制及应用[J]. 岩土力学, 2014, 35(12):3636-3643. Sun Houchao, Yang Ping, Wang Guoliang, et al. Development of Mechanical Experimental System for Interface Layer Between Frozen Soil and Structure and Its Application[J]. Rock and Soil Mechanics, 2014, 35(12):3636-3643.
[15] 刘开富, 许家培, 周青松, 等. 土工格栅-土体界面特性大型直剪试验研究[J]. 岩土工程学报, 2019, 41(增刊1):185-188. Liu Kaifu, Xu Jiapei, Zhou Qingsong, et al. Large-Scale Direct Shear Tests on Properties of Geogrid-Soil Interfaces[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Sup. 1):185-188.
[16] 张明义, 白晓宇, 高强, 等. 黏性土中桩-土界面受力机制室内试验研究[J]. 岩土力学, 2017, 38(8):2167-2174. Zhang Mingyi, Bai Xiaoyu, Gao Qiang, et al. Experimental Study on Interfacial Bearing Mechanism of Piles in Cohesive Soil[J]. Rock and Soil Mechanics, 2017, 38(8):2167-2174.
[17] Robert D J, Yang A, Senthilkumar M, et al. Cyclic Loading Response of Offshore Pipelines Using Simple Shear Tests[J]. Soil Dynamics and Earthquake Engineering, 2020, 130.
[18] Ge Q, Xiong F, Xie L W, et al. Dynamic Interaction of Soil-Structure Cluster[J]. Soil Dynamics and Earthquake Engineering, 2019, 123:16-30.
[19] 公路土工试验规程:JTG E40-2007.[S]. 北京:人民交通出版社, 2007. Test Methods of Soils for Highway Engineering:JTG E40-2007[S]. Beijing:China Communications Press, 2007.
[20] Clough G W, Duncan J M. Finite Element Analysis of Retaining Wall Behavior[J]. Journal Soil Mech & Found Div ASCE, 1971, 97(12):1657-1674.
[21] 刘学增, 朱合华. 上海典型土层与混凝土接触特性的试验研究[J]. 同济大学学报(自然科学版), 2004, 32(5):46-51. Liu Xuezeng, Zhu Hehua. Experiment on Interaction Between Typical Soils in Shanghai and Concrete[J]. Journal of Tongji University(Natural Science), 2004, 32(5):46-51.
[22] 冯德成, 宋宇. 沥青路面层间结合状态试验与评价方法研究[J]. 哈尔滨工业大学学报, 2007, 39(4):128-132. Feng Decheng, Song Yu. Study of Test and Evaluation Method on Interfacial Combining State of Asphalt Pavement[J]. Journal of Harbin Institute of Technology, 2007, 39(4):128-132.
[23] 曹海莹, 杜量, 徐珊, 等. 运营期上硬下软型双层地基动力损伤评价[J]. 公路交通科技, 2020, 37(4):37-46. Cao Haiying, Du Liang, Xu Shan, et al. Evaluation of Dynamic Damage of Two-Layer Subgrade with Upper Dry Crust and Lower Soft Soil Layer in Operation Period[J]. Journal of Highway and Transportation Research and Development, 2020, 37(4):37-46.
[24] 周丹, 马泽欣, 刘黎萍, 等. 基于足尺加速加载试验的现役沥青路面疲劳特性研究[J]. 公路交通科技, 2020, 37(1):17-24. Zhou Dan, Ma Zexin, Liu Liping, et al. Study on Fatigue Performance of In-Service Asphalt Pavement Based on Full-Scale Accelerated Loading Test[J]. Journal of Highway and Transpotation Research and Development, 2020, 37(1):17-24.
[25] 公路工程技术标准:JTG B10-2014.[S]. 北京:人民交通出版社, 2014. Techinical Standard of Highway Engeering:JTG B10-2014[S]. Beijing:China Communications Press, 2014.
[26] 明添学, 杨清标, 李蓉, 等. 滇西加里东期平河复式花岗岩体皓石U-Pb年龄、Hf同位素特征及其风化壳型稀土矿成矿认识[J]. 吉林大学学报(地球科学版), 2020, 50(6):1687-1702. Ming Tianxue, Yang Qingbiao, Li Rong, et al. Zircon U-Pb Age and Hf Isotope Characteristics of Caledonian Pinghe Composite Granite Pluton:Its Mineralization of Granite Weathering Crust Type REE Deposit[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6):1687-1702.
[27] 彭游博, 刘文彬, 赵军, 等. 辽南岩体LA-ICP-MS皓石U-Pb年龄、岩石地球化学特征及其地质意义:以盖州万福一岫岩龙潭地区三叠纪侵入岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(6):1737-1751. Peng Youbo, Liu Wenbin, Zhao Jun, et al. Geochemical Characteristic, LA-ICP-MS Zircon U-Pb Dating and Geological Significance of South Liaoning Pluton:A Cace Study of Triassic Pluton in Gaizhou Wanfu-Xiuyan Longtan Area[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6):1737-1751.
[28] 王淑云, 楼志刚. 原状和重塑海洋黏土经历动载后的静强度衰减[J]. 岩土力学, 2000, 21(1):20-23. Wang Shuyun, Lou Zhigang. The Degradation of Undrained Shear Strength of Undisturbed and Remolded Marine Clay After Cyclic Loading[J]. Rock and Soil Mechanics, 2000, 21(1):20-23.
[29] Wang Haojie, Sun Ping, Liu Enlong, et al. Dynamic Properties of Tianshui Saturated Remolded Loess:A Laboratory Study[J]. Engineering Geology, 2020, 272:1-13.
[1] 洪勇, 李子睿, 唐少帅, 王陆阳, 李亮. 平均粒径对砂土剪切特性的影响及细观机理[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1814-1822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖长来,张力春,方 樟,贾 涛. 洮儿河扇形地地表水与地下水资源的转化关系[J]. J4, 2006, 36(02): 234 -0239 .
[2] 张 辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. J4, 2006, 36(02): 284 -0288 .
[3] 张凡芹,王伟锋,王建伟,孙粉锦,刘锐娥. 苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J]. J4, 2006, 36(03): 365 -369 .
[4] 霍秋立,汪振英,李敏,付丽,冯大晨. 海拉尔盆地贝尔凹陷油源及油气运移研究[J]. J4, 2006, 36(03): 377 -383 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .
[8] 赵 峰,范海峰,田竹君,王志刚. 吉林省中部不同土地利用类型的土壤侵蚀强度变化分析[J]. J4, 2005, 35(05): 661 -666 .
[9] 姜晓轶,周云轩. 从空间到时间——时空数据模型研究[J]. J4, 2006, 36(03): 480 -485 .
[10] 高志前,樊太亮,李 岩,刘武宏,陈玉林. 塔里木盆地寒武-奥陶纪海平面升降变化规律研究[J]. J4, 2006, 36(04): 549 -556 .