吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1544-1550.doi: 10.13278/j.cnki.jjuese.20200289

• 绿色岩土工程 • 上一篇    下一篇

冻融循环下初始含水率对非饱和膨胀土剪切特性试验

张琦1, 杨忠年1, 时伟1, 凌贤长1,2, 涂志斌1   

  1. 1. 青岛理工大学土木工程学院, 山东 青岛 266033;
    2. 哈尔滨工业大学土木工程学院, 哈尔滨 150001
  • 收稿日期:2020-11-22 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 杨忠年(1985-),男,博士研究生,副教授,主要从事岩土工程和隧道工程方面的教学和科研工作,E-mail:yzhnqd@qut.edu.cn E-mail:yzhnqd@qut.edu.cn
  • 作者简介:张琦(1997-),女,硕士研究生,主要从事冻融循环下的膨胀土改良与加固研究,E-mail:zq.qut@qq.com
  • 基金资助:
    国家重大科研仪器开发基金项目(41627801);冻土工程国家重点实验室开放基金项目(SKLFSE201601);山东省泰山学者专项基金项目(2015-212)

Experiment on Shear Characteristics of Unsaturated Expansive Soil with Initial Moisture Content Under Freezing-Thawing Cycles

Zhang Qi1, Yang Zhongnian1, Shi Wei1, Ling Xianzhang1,2, Tu Zhibin1   

  1. 1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China;
    2. School of Civil Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2020-11-22 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Support by the National Major Scientific Research Instrument Development Fund (41627801),the Foundation for Ope-ning of State Key Laboratory of Frozen Soil Engineering (SKLFSE201601) and the Taishan Scholars Special Fund Project of Shandong Province(2015-212)

摘要: 为探究冻融循环条件下初始含水率对膨胀土偏应力-应变关系和剪切特性的影响,本文对不同初始含水率的非饱和膨胀土进行了不固结不排水三轴剪切试验。结果表明:1)非饱和膨胀土的偏应力-应变曲线的形式随含水率增大由应变软化逐渐转变为应变硬化,偏应力峰值随含水率增大而降低;2)非饱和膨胀土的抗剪强度随初始含水率的增加呈线性下降趋势;3)非饱和膨胀土在第1次冻融循环后偏应力及抗剪强度大幅度下降,在3~7次冻融循环后达到稳定。初始含水率是影响非饱和膨胀土力学性质的主要原因。

关键词: 非饱和膨胀土, 初始含水率, 冻融循环作用, 偏应力-应变关系

Abstract: In freezing-thawing cycles, soil moisture changes dramatically, which leads to the change of bearing capacity of expansive soil. In this study, the unconsolidated and undrained triaxial shear tests were carried out on unsaturated expansive soil with different initial water content,and the strength variation mechanism of expansive soil in freezing-thawing cycles was analyzed on the basis of experiments. The influence of initial water content on the deviatoric stress-strain relationship and shear characteristics of expansive soil under freeze-thaw cycle was discussed. The results showed that:1) The form of deviatoric stress-strain curve of the unsaturated expansive soil changed gradually from strain softening to strain hardening with the increase of water content, while the peak deviatoric stress decreased with the increase of water content; 2) The shear strength of the unsaturated expansive soil decreased linearly with the increase of initial water content; 3) After the first freezing-thawing cycle, the deviator stress and shear strength of the unsaturated expansive soil decreased significantly, and reached stability after 3 to 7 freezing-thawing cycles. This study provides a powerful basis for the engineering design of expansive soil in a seasonal frozen zone.

Key words: unsaturated expansive soils, initial moisture content, freeze-thaw cycles, deviatoric stress-strain relationship

中图分类号: 

  • P694
[1] Liu S, Lu Y, Weng L, et al. Field Study of Treatment for Expansive Soil/Rock Channel Slope with Soilbags[J]. Geotextiles and Geomembranes, 2015, 43(4):283-292.
[2] Blayi R A, Sherwani A F H, Ibrahim H H, et al. Strength Improvement of Expansive Soil by Utilizing Waste Glass Powder[J]. Case Studies in Construction Materials, 2020, 13:e00427.
[3] Narani S S, Abbaspour M, Hosseini S M M M, et al. Sustainable Reuse of Waste Tire Textile Fibers (WTTFs) as Reinforcement Materials for Expansive Soils:With a Special Focus on Landfill Liners/Covers[J]. Journal of Cleaner Production, 2020, 247:119151.
[4] 包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 2004, 26(1):1-15. Bao Chenggang. Behavior of Unsaturated Soil and Stability of Expansive Soil Slope[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1):1-15.
[5] 刘宽, 叶万军, 高海军, 等.干湿环境下膨胀土力学性能劣化的多尺度效应[J]. 岩石力学与工程学报, 2020, 39(10):2148-2159. Liu Kuan, Ye Wanjun, Gao Haijun, et al. Multi-Scale Effects of Mechanical Property Degradation of Expansive Soils Under Drying-Wetting Environments[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10):2148-2159.
[6] 朱斯伊, 王志俭, 曹玲, 等.冻融循环下荆门膨胀土剪切试验研究[J]. 三峡大学学报(自然科学版), 2019, 41(3):59-63. Zhu Siyi, Wang Zhijian, Cao Ling, et al. Shear Test of Jingmen Expansive Soil Under Freezing-Thawing Cycles[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(3):59-63.
[7] 房建宏, 陈鑫, 徐安花, 等.冻融循环对青藏红黏土物理力学性质影响试验研究[J]. 冰川冻土, 2018, 40(1):62-69. Fang Jianhong, Chen Xin, Xu Anhua, et al. Experimental Study of the Influence of Freezing-Thawing Cycles on Physical and Mechanical Properties of Qinghai-Tibet Red Clay[J]. Journal of Glaciology and Geocryology, 2018, 40(1):62-69.
[8] Lu Y, Liu S, Alonso E L, et al. Volume Changes and Mechanical Degradation of a Compacted Expansive Soil Under Freeze-Thaw Cycles[J]. Cold Regions Science and Technology, 2019, 157:206-214.
[9] 王也, 王建磊, 鲁洋, 等.南阳膨胀土冻融循环后的土水特征试验研究[J]. 长江科学院院报, 2019, 36(2):91-96. Wang Ye, Wang Jianlei, Lu Yang, et al. Experimental Research on Soil-Water Characteristics of Nanyang Expansive Soil Subjected to Freeze-Thaw Cycles[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(2):91-96.
[10] 王大雁, 马巍, 常小晓, 等.冻融循环作用对青藏黏土物理力学性质的影响[J]. 岩石力学与工程学报, 2005, 24(23):4313-4319. Wang Dayan, Ma Wei, Chang Xiaoxiao, et al. Physico-Mechanical Properties Changes of Qinghai-Tibet Clay Due to Cyclic Freezing and Thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23):4313-4319.
[11] 胡再强, 梁志超, 吴传意, 等.冻融循环作用下石灰改性黄土的力学特性试验研究[J]. 土木工程学报, 2019, 52(增刊1):211-217. Hu Zaiqiang, Liang Zhichao, Wu Chuanyi, et al. Experimental Study on Mechanical Properties of Lime Modified Loess Under Freeze-Thaw Cycle[J]. China Civil Engineering Journal, 2019, 52(Sup.1):211-217.
[12] 王天亮, 刘建坤, 彭丽云, 等.冻融循环作用下水泥改良土的力学性质研究[J]. 中国铁道科学, 2010, 31(6):7-13. Wang Tianliang, Liu Jiankun, Peng Liyun, et al. Research on the Mechanical Properties of the Cement-Modified Soil Under the Action of Freezing and Thawing Cycles[J]. China Railway Science, 2010, 31(6):7-13.
[13] 许雷, 刘斯宏, 鲁洋, 等.冻融循环下膨胀土物理力学特性研究[J]. 岩土力学, 2016, 37(增刊2):167-174. Xu Lei, Liu Sihong, Lu Yang, et al. Physico-Mechanical Properties of Expansive Soil Under Freeze-Thaw Cycles[J]. Rock and Soil Mechanics, 37(Sup.2):167-174.
[14] 土工试验方法标准:GB/T 50123-2019[S]. 北京:中国计划出版社, 1999. Standard for Geotechnial Testing Method:GB/T 50123-2019[S]. Beijing:China Planning Press, 1999.
[15] 戴福初, 董文萍, 黄志全, 等. 南水北调中线段原状膨胀土抗剪强度试验研究[J]. 工程科学与技术, 2018, 50(6):123-131. Dai Fuchu, Dong Wenping, Huang Zhiquan, et al. Study on Shear Strength of Undisturbed Expansive Soil of Middle Route of South-to-North Water Diversion Project[J]. Advanced Engineering Sciences. 2018, 50(6):123-131.
[16] 陶勇, 杨平, 杨国清, 等.冻融作用对海相软土压缩性及抗剪强度影响研究[J]. 冰川冻土, 2019, 41(3):638-645. Tao Yong, Yang Ping, Yang Guoqing, et al. A Study on Influence of Freezing and Thawing on Compressibility and Shear Strength of Marine Soft Soil[J]. Journal of Glaciology and Geocryology, 2019, 41(3):638-645.
[17] 陈剑平, 刘经, 王清, 等. 含水率对分散性土抗剪强度特性影响的微观解释[J]. 吉林大学学报(地球科学版), 2021, 51(3):792-803. Chen Jianping, Liu Jing, Wang Qing, et al. Microscopic Interpretation of Water Content Influence on Shear Strength of Dispersive Soil[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3):792-803.
[18] 徐学祖.冻土与盐溶液系统中热质迁移及变形过程试验研究[J]. 冰川冻土, 1992, 14(4):289-295. Xu Xuezu. Experimental Study on Processes of Heat-Mass Transfer and Deformation in System of Frozen Kaolin and Salt Solution[J]. Journal of Glaciology and Geocryology, 1992, 14(4):289-295.
[19] 李彦龙, 汪自力. 考虑水分迁移影响的浅层膨胀土抗剪强度冻融劣化特征[J]. 岩石力学与工程学报, 2019, 38(6):1261-1268. Li Yanlong, Wang Zili. Shear Strength Degradation Characteristics of Expansive Soil During Freeze-Thaw Process Considering Moisture Migration[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6):1261-1268.
[20] 刘鹏. 膨胀土抗剪强度与含水量的相互关系[J]. 土工基础, 2011, 25(4):66-68. Liu Peng. Relationship Between Shearing Strength and Water Content of Expansive Soil[J]. Soil Engineering and Foundation, 2011, 25(4):66-68.
[1] 宋志, 邓荣贵, 陈泽硕, 冯伟. 磨西河泥石流堵断大渡河物理模拟与早期识别[J]. 吉林大学学报(地球科学版), 2017, 47(1): 163-170.
[2] 徐则民, 梅雪峰, 王礼荣, 张有为, 曾强, 郭丽丽. 滑坡预警中的降水时空变异性——以云南头寨沟为例[J]. 吉林大学学报(地球科学版), 2017, 47(1): 154-162.
[3] 苏生瑞,李鹏,王琦,苏卫卫,张莹. 叠瓦状逆断层的变形规律和力学机理物理模拟试验:以龙门山断裂带为例[J]. 吉林大学学报(地球科学版), 2014, 44(1): 249-258.
[4] 薛群威,刘艳辉,唐灿. 突发地质灾害气象预警统计模型与应用[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1614-1622.
[5] 王洪德,高幼龙,薛星桥,金枭豪,王刚. 典型滑坡监测点优化布置[J]. 吉林大学学报(地球科学版), 2013, 43(3): 858-866.
[6] 彭帅英,李广杰,彭文,马建全,王雪冬,秦胜伍. 基于改进遗传算法的Holt-Winters模型在采空沉陷预测中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(2): 515-520.
[7] 张以晨, 佴磊, 孟凡奇, 王延亮, 王洁玉, 王立春. 基于最优组合赋权理论的可拓学评价模型的应用[J]. J4, 2011, 41(4): 1110-1115.
[8] 刘晶晶, 唐川, 程尊兰, 刘宇. 气温对西藏冰湖溃决事件的影响[J]. J4, 2011, 41(4): 1121-1129.
[9] 张海燕, 王新民, 尹慧, 张以晨, 王延亮, 王立春. 地质灾害风险评价阈回归联合聚类分析[J]. J4, 2011, 41(2): 529-535.
[10] 孟凡奇, 李广杰, 秦胜伍, 汪茜, 马建全. 基于证据权法的泥石流危险度区划[J]. J4, 2010, 40(6): 1380-1384.
[11] 李伟忠,吴冲龙,谭照华. 面向勘察与管理的三峡库区地灾勘察点源信息系统[J]. J4, 2006, 36(03): 424-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖长来,张力春,方 樟,贾 涛. 洮儿河扇形地地表水与地下水资源的转化关系[J]. J4, 2006, 36(02): 234 -0239 .
[2] 张 辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. J4, 2006, 36(02): 284 -0288 .
[3] 张凡芹,王伟锋,王建伟,孙粉锦,刘锐娥. 苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J]. J4, 2006, 36(03): 365 -369 .
[4] 霍秋立,汪振英,李敏,付丽,冯大晨. 海拉尔盆地贝尔凹陷油源及油气运移研究[J]. J4, 2006, 36(03): 377 -383 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .
[8] 赵 峰,范海峰,田竹君,王志刚. 吉林省中部不同土地利用类型的土壤侵蚀强度变化分析[J]. J4, 2005, 35(05): 661 -666 .
[9] 姜晓轶,周云轩. 从空间到时间——时空数据模型研究[J]. J4, 2006, 36(03): 480 -485 .
[10] 高志前,樊太亮,李 岩,刘武宏,陈玉林. 塔里木盆地寒武-奥陶纪海平面升降变化规律研究[J]. J4, 2006, 36(04): 549 -556 .