吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1560-1569.doi: 10.13278/j.cnki.jjuese.20200296

• 绿色岩土工程 • 上一篇    下一篇

高能级强夯法处理深厚吹填砂土地基现场试验

苏亮1, 时伟1, 水伟厚2, 曹建萌3   

  1. 1. 青岛理工大学土木工程学院, 山东 青岛 266033;
    2. 大地巨人(北京)工程科技有限公司, 北京 100176;
    3. 中铁建工集团有限公司, 北京 100160
  • 收稿日期:2020-12-08 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 时伟(1964-),女,教授,主要从事高层建筑基础工程与深基坑支护、地基处理与基础托换方面的研究,E-mail:susan.sw@163.com E-mail:susan.sw@163.com
  • 作者简介:苏亮(1994-),男,硕士研究生,主要从事地基处理方面的研究,E-mail:1911551565@qq.com
  • 基金资助:
    国家自然科学基金青年基金项目(41702320);山东省高等学校科技计划项目(J17KA204);山东省泰山学者专项基金项目(2015-212)

Field Test of High Energy Dynamic Compaction on Hydraulic Sandy Filling

Su Liang1, Shi Wei1, Shui Weihou2, Cao Jianmeng3   

  1. 1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China;
    2. Dadi Giant Engineering Technology Co., Ltd., Beijing 100176, China;
    3. China Railway Construction Engineering Co., Ltd., Beijing 100160, China
  • Received:2020-12-08 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the Youth Fund of National Natural Science Foundation of China (41702320),the Higher Education Institutions Science and Technology Program of Shandong (J17KA204) and the Taishan Scholars Special Fund Project of Shandong Province (2015-212)

摘要: 沿海吹填砂土地基地下水位较高、常含软土夹层,地基处理难度大。为了研究高能级强夯在这类吹填砂土地基上的加固效果,在山东沿海某吹填砂土场地开展6 000和8 000 kN·m能级强夯加固试验。试验结束后分别运用标准贯入试验、静力触探试验、平板载荷试验进行现场检测。通过对比分析了设计要求深度范围内标准贯入试验和静力触探试验,发现夯前夯后标准贯入试验击数和静力触探锥尖试验阻力均明显提升,有效消除了饱和砂土和饱和粉土的液化势;通过平板载荷试验p-s曲线及夯后静力触探锥尖阻力标准值与承载力特征值的关系式,得到夯后砂土地基承载力特征值≥120 kPa,验证了高能级强夯方案的可行性。其次,对软土夹层位置和地下水位高度展开研究,发现软土层会阻碍夯击能传递,减小强夯有效加固深度,且软土层位置不同对强夯加固效果影响程度不同,强夯影响临界范围处存在软土层时,有效加固深度为软土层顶部位置处;对砂土地基进行4 000 kN·m能级强夯试验时,发现未降水强夯后有效加固深度为5 m,降水至地面以下3 m强夯后有效加固深度达到了7 m,提高了加固效果。在高能级强夯研究基础上,对现场吹填砂土地基进行了75万m2的大面积高能级强夯施工,发现处理后地基能够满足建筑用地要求。

关键词: 吹填砂土地基, 高能级强夯, 标准贯入试验, 静力触探试验, 平板载荷试验

Abstract: During coastal blowing and filling of sandy soil foundation, high water table levels and soft interlayers are often encountered, which results in the difficulty to reinforce the ground. In order to study the reinforcement effect of high energy dynamic compaction on this type of soil, a field test of high energy dynamic compaction with 6 000 kN·m and 8 000 kN·m energy levels on a blow-filled sandy soil along the coast of Shandong was conducted. After the test, standard penetration test,static cone penetration test and plate loading test were used for on-site inspection. Through analyzing, the number of SPT strokes and the tip resistance of CPT were significantly increased in the depth range required by the design before and after the dynamic compaction, indicating that high energy dynamic compaction is very effective in eliminating the liquefaction potential of saturated sand and saturated chalk soil. Through the PLT p-s curve and the relationship formula of the tip resistance standard value and the bearing capacity characteristic value, the bearing capacity characteristic value ≥ 120 kPa after dynamic compaction was obtained, proved the feasibility of the high energy dynamic scheme. The impacts of the position of the soft soil interlayer and the height of the water table were studied; And it was found that the soft soil layer impeded the transfer of the dynamic energy and reduced the effective reinforcement depth of dynamic compaction, and the different position of the soft soil layer had different influence on the effect of dynamic compaction:When there was a soft soil layer at the critical area affected by dynamic compaction, the effective reinforcement depth was at the top of the soft soil layer. In the field test of high energy dynamic compaction with 4 000 kN·m energy level, the effective reinforcement depth reached 5 m after dynamic compaction without precipitation; However, with the precipitation of 3 m below ground level, after dynamic compaction the effective reinforcement depth reached 7 m. On the basis of high energy level dynamic research,a high energy level ramming was carried out in a large area of 750 000 square meters, and it was found that the treated foundation met the requirements of the construction site.

Key words: hydraulic sandy fill, high energy level dynamic compaction, standard penetration test, static cone penetration test, plate loading test

中图分类号: 

  • TU472.31
[1] 王铁宏, 水伟厚. 强夯技术与节能环保[J]. 节能与环保, 2005(11):10-13. Wang Tiehong, Shui Weihou. Dynamic Compaction and Environmentally Friendly[J]. Energy Conservation & Environmental Protection, 2005(11):10-13.
[2] 王铁宏, 水伟厚, 王亚凌.对高能级强夯技术发展的全面与辩证思考[J]. 建筑结构, 2009, 39(11):86-89. Wang Tiehong, Shui Weihou, Wang Yaling. Thinking of High Energy Level Dynamic Compaction Application and Development[J]. Building Structures, 2009, 39(11):86-89.
[3] 李连祥, 符庆宏, 郑英杰, 等. 中国强夯三十年[J]. 工业建筑, 2015(增刊1):8. Li Lianxiang, Fu Qinghong, Zheng Yingjie, et al. The Past Thirty of Dynamic Compaction in China[J]. Industrial Construction, 2015(Sup.1):8.
[4] 年廷凯, 水伟厚, 李鸿江, 等. 沿海碎石回填地基上高能级强夯系列试验对比研究[J]. 岩土工程学报, 2010, 32(7):1029-1034. Nian Tingkai, Shui Weihou, Li Hongjiang, et al. Field Tests of High Energy Dynamic Compaction on Foundation Backfilled by Crushed Stone in Coastal Area[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7):1029-1034.
[5] 年廷凯, 李鸿江, 杨庆, 等. 不同土质条件下高能级强夯加固效果测试与对比分析[J]. 岩土工程学报, 2009, 31(1):139-144. Nian Tingkai, Li Hongjiang. Yang Qing. et al. Improvement Effect of High Energy Dynamic Compaction Under Complicated Geological Conditions[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1):139-144.
[6] 贾敏才, 刘波, 周训军. 滨海含软土夹层粉细砂地基高能级强夯加固试验研究[J]. 建筑结构学报, 2019, 40(11):240-246. Jia Mincai, Liu Bo, Zhou Xunjun. Field Test Study of High Energy Dynamic Compaction on Marine Silty Fine Sand Deposits with Soft Interlayers[J]. Journal of Building Construction, 2019, 40(11):240-246.
[7] 建筑地基处理技术规范:JGJ 79-2012[S]. 北京:中国建筑工业出版社, 2012. Technical Code for Ground Treatment of Building:JGJ 79-2012[S]. Beijing:China Architecture & Building Press, 2012.
[8] 闫续屏, 吕和蔼. 超高能级强夯法处理人工冲填填海地基[J]. 施工技术, 2013, 42(19):80-84. Yan Xuping, Lü Heai. Dynamic Compaction with Ultra-High Energy on Artificial Filling-Sea Subsoil[J]. Construction Technology, 2013, 42(19):80-84.
[9] 赵家琛, 吕江, 赵晖, 等. 高能级强夯处理抛填路基的有效加固深度[J/OL].土木与环境工程学报, 2021.doi:10.11835/j.issn.2096-6717.2020.091. Zhao Jiachen, Lü Jiang, Zhao Hui, et al. Effective Reinforcement Depth of High Energy Dynamic Compaction for Filled Subgrade[J/OL]. Journal of Civil and Environmental Engineering, 2021.doi:10.11835/j.issn.2096-6717.2020.091.
[10] 洪勇, 李子睿, 唐少帅, 等.平均粒径对砂土剪切特性的影响及细观机理[J]. 吉林大学学报(地球科学版), 2020, 50(6):1814-1822. Hong Yong, Li Zirui, Tang Shaoshuai, et al. Effect of Average Particle Size on Shear Properties of Sand and Its Mesomechanical Analysis[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6):1814-1822.
[11] 水伟厚, 王铁宏, 王亚凌. 碎石回填地基上10000kN·m高能级强夯标准贯入试验[J]. 岩土工程学报, 2006, 28(10):1309-1312. Shui Weihou, Wang Tiehong, Wang Yaling. SPT for Dynamic Compaction with 10000 kN·m High Energy on Foundation Backfilled with Crushed Stone[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10):1309-1312.
[12] 工程地质手册编委会.工程地质手册[M]. 5版.北京:中国建筑工业出版社, 2018. Geological Engineering Handbook Editorial Board. Geological Engineering Handbook[M]. 5th ed. Beijing:China Architecture & Building Press, 2018.
[13] 王铁宏, 水伟厚, 王亚凌, 等.强夯法有效加固深度的确定方法与判定标准[J]. 工程建设标准化, 2005(3):27-38. Wang Tiehong, Shui Weihou, Wang Yaling, et al. The Definite Method and Decision Criterion on Effective Depth of Dynamic Compaction Improvement[J]. Standardization of Engineering Construction, 2005(3):27-38.
[14] 建筑地基检测技术规范:JGJ 340-2015[S]. 北京:中国建筑工业出版社, 2015. Technical Code for Testing of Building Foundation Soils:JGJ 340-2015[S]. Beijing:China Architecture & Building Press, 2015.
[15] 闫续屏, 安明. 高水位地基强夯机理及关键施工技术[J]. 施工技术, 2015, 44(1):81-83. Yan Xuping, An Ming. Construction Technology and Dynamic Compaction Mechanism of High Water Level Foundation[J]. Construction Technology, 2015, 44(1):81-83.
[1] 孙广利,李广杰,周景宏,于光源. 长春硬塑状态老黏性土地基承载力[J]. 吉林大学学报(地球科学版), 2014, 44(2): 591-595.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖长来,张力春,方 樟,贾 涛. 洮儿河扇形地地表水与地下水资源的转化关系[J]. J4, 2006, 36(02): 234 -0239 .
[2] 张 辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. J4, 2006, 36(02): 284 -0288 .
[3] 张凡芹,王伟锋,王建伟,孙粉锦,刘锐娥. 苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J]. J4, 2006, 36(03): 365 -369 .
[4] 霍秋立,汪振英,李敏,付丽,冯大晨. 海拉尔盆地贝尔凹陷油源及油气运移研究[J]. J4, 2006, 36(03): 377 -383 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .
[8] 赵 峰,范海峰,田竹君,王志刚. 吉林省中部不同土地利用类型的土壤侵蚀强度变化分析[J]. J4, 2005, 35(05): 661 -666 .
[9] 姜晓轶,周云轩. 从空间到时间——时空数据模型研究[J]. J4, 2006, 36(03): 480 -485 .
[10] 高志前,樊太亮,李 岩,刘武宏,陈玉林. 塔里木盆地寒武-奥陶纪海平面升降变化规律研究[J]. J4, 2006, 36(04): 549 -556 .