吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1356-1365.doi: 10.13278/j.cnki.jjuese.20210005

• 岩土防灾与减灾 • 上一篇    下一篇

3种特殊土物理力学性质指标统计分析

乔峰1, 薄景山1,2, 常晁瑜1, 李琪2, 杨元敏1   

  1. 1. 防灾科技学院地质工程学院, 河北 三河 065201;
    2. 中国地震局工程力学研究所/中国地震局地震工程与工程振动重点实验室, 哈尔滨 150080
  • 收稿日期:2021-01-10 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 薄景山(1957-),男,教授,博士生导师,主要从事岩土工程抗震研究,E-mail:bojingshan@163.com E-mail:bojingshan@163.com
  • 作者简介:乔峰(1990-),男,讲师,主要从事岩土工程抗震研究,E-mail:qiaofengCT@163.com
  • 基金资助:
    国家自然科学基金重大项目(U1939209);中央高校基本科研业务费专项资金创新团队资助计划项目(ZY20160101);中国地震局建筑物破坏机理与防御重点实验室开放基金项目(FZ201101);中国地震局地震工程与工程振动重点实验室重点专项(2020EEEVL0201);中国地震局重大政策理论与实践问题研究课题(CEAZY2020JZ07)

Statistical Analysis of Physical and Mechanical Properties of Three Special Soils

Qiao Feng1, Bo Jingshan1,2, Chang Chaoyu1, Li Qi2, Yang Yuanmin1   

  1. 1. Institute of Disaster Prevention, Institute of Geological Engineering, Sanhe 065201, Hebei, China;
    2. Institute of Engineering Mechanics/Key Laboratory of Earthquake Engineering and Engineering Vibration, China Earthquake Administration, Harbin 150080, China
  • Received:2021-01-10 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the National Natural Science Foundation of China (U1939209), the Central University Basic Research Business Terminal Special Fund Innovation Team Funding Project (ZY20160101), the Open Fund Project of Key Laboratory of Building Collapse Mechanism and Prevention of China Earthquake Administration (FZ201101), the Key Project of Key Laboratory of Earthquake Engineering and Engineering Vibration of China Earthquake Administration (2020EEEVL0201) and the Research Subject of Major Policy Theory and Practice of China Earthquake Administration (CEAZY2020JZ07)

摘要: 常规物理力学指标可以良好反映土的工程性质。收集全国范围内软土、黄土和红土的相关专著、科技论文和地震安全性评价报告,统计得出3种特殊土各项物理力学指标的范围、平均值和变异系数,通过对各项物理力学指标间的相关性分析,对3种特殊土的工程特性进行了研究。对比结果发现:3种特殊土物理性质的变异系数总体较小、较为稳定,而力学性质的变异系数变化较大、离散程度较高;3种特殊土各项物理力学性质指标间存在相关性,或呈线性关系,或呈带状变化,同类指标软土和红土的相关系数高于黄土。通过回归拟合方法给出了|r|∈[0.5,1.0]的拟合公式,利用线性关系检验方法对公式的精度和准确性进行检验,结果表明:本文给出的拟合公式F>F0.05,回归效果较为显著,便于工程应用。

关键词: 特殊土, 工程特性, 数据库, 统计分析

Abstract: Conventional physical and mechanical indicators can well reflect the engineering properties of soil. Through collecting relevant monographs, scientific papers, and seismic safety evaluation reports on soft soil, loess and red soil national widely, the statistics of the range, average value, and coefficient of variation of various physical and mechanical indicators of the three special soils were obtained. Based on the correlation analysis between the indicators, the engineering characteristics of the three special soils were studied. The comparison results show that the coefficient of variation of the physical properties of the three special soils is generally small and relatively stable, while the coefficient of variation of the mechanical properties varies greatly and discretely; There is a correlation between the physical and mechanical properties of the three special soils, either in a linear, or a belt-like change; The correlation coefficients of similar indicators of soft soil and red soil are higher than that of loess. The fitting formula of|r|∈[0.5, 1.0] is given by the regression fitting method used to test the precision and accuracy of the formula based on the linear relationship test. The results show that the F values of the fitting formula given in this paper are all greater than F0.05,it can be seen that the regression effect is more obvious, which is convenient for engineering application.

Key words: special soil, engineering characteristics, database, statistical analysis

中图分类号: 

  • TU435
[1] 胡聿贤, 孙平善, 章在墉, 等.场地条件对震害和地震动的影响[J]. 地震工程与工程振动, 1980(试刊1):34-41. Hu Yuxian, Sun Pingshan, Zhang Zaiyong, et al. Effects of Site Conditions on Earthquake Damage and Ground Motion[J]. Earthquake Engineering and Engineering Vibration, 1980(Tentative 1):34-41.
[2] 张建毅, 张宇东, 徐国栋, 等.软土震陷判别方法分析及工程应用[J]. 世界地震工程, 2012, 28(3):53-59. Zhang Jianyi, Zhang Yudong, Xu Guodong, et al. Analysis and Engineering Application of Soft Soil Seismic Settlement Discrimination Methods[J]. World Earthquake Engineering, 2012, 28(3):53-59.
[3] 乔建伟, 郑建国, 刘争宏, 等. "一带一路"沿线特殊岩土分布与主要工程问题[J]. 灾害学, 2019, 34(增刊1):65-71. Qiao Jianwei, Zheng Jianguo, Liu Zhenghong, et al. Special Geotechnical Distribution and Main Engineering Issues Along the "Belt and Road" Route[J]. Hazardology, 2019, 34(Sup.1):65-71.
[4] Takaharu S, Yuichi N, Takashi S, et al. Consolidation Properties of Pusan New Port Clays[C]//Proceedings of Korea-Japan Joint Workshop. Busan:[s. n.], 2003:119-127.
[5] Hossam M A, Decces T B, Abdelmalek B, et al. Thermal Conductivity of Soft Bangkok Clay from Laboratory and Field Measurement[J]. Engineering Geology, 2009(105):211-219.
[6] 白冰, 肖宏彬.软土工程若干理论与应用[M]. 北京:中国水利水电出版社, 2002. Bai Bing, Xiao Hongbin. Some Theories and Applications of Soft Soil Engineering[M]. Beijing:China Water Resources and Hydropower Press, 2002.
[7] 梁国钱, 张民强, 俞炯奇, 等.浙江沿海地区软土工程特性[J]. 中国矿业大学学报, 2002, 31(5):98-100. Liang Guoqian, Zhang Minqiang, Yu Jiongqi, et al. Engineering Characteristics of Soft Soil in Coastal Areas of Zhejiang[J]. Journal of China University of Mining & Technology, 2002, 31(5):98-100.
[8] 刘祖典.黄土力学与工程[M]. 西安:陕西科学技术出版社, 1997. Liu Zudian. Loess Mechanics and Engineering[M]. Xi'an:Shaanxi Science and Technology Press, 1997.
[9] 李保雄, 苗天德.黄土抗剪强度的水敏感性特征研究[J]. 岩石力学与工程学报, 2006, 25(5):1003-1008. Li Baoxiong, Miao Tiande. Research on Water Sensitivity Characteristics of Loess Shear Strength[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5):1003-1008.
[10] 孙建中, 王兰民, 门玉明, 等, 黄土学:中篇[M]. 西安:西安地图出版社, 2013. Sun Jianzhong, Wang Lanmin, Men Yuming, et al. Loess:Part II[M]. Xi'an:Xi'an Map Publishing House, 2013.
[11] 刘海松, 倪万魁, 颜斌, 等.黄土结构强度与湿陷性的关系初探[J]. 岩土力学, 2008, 29(3):722-726. Liu Haisong, Ni Wankui, Yan Bin, et al.A Preliminary Study on the Relationship Between Structural Strength and Collapsibility of Loess[J]. Rock and Soil Mechanics, 2008, 29(3):722-726.
[12] 王梅. 中国湿陷性黄土的结构性研究[D]. 太原:太原理工大学, 2010. Wang Mei. The Structural Study of Collapsible Loess in China[D]. Taiyuan:Taiyuan University of Technology, 2010.
[13] 贺珺. 黔中红黏土物理性质指标特殊性研究[D].贵阳:贵州大学, 2009. He Jun. Research on the Peculiarities of Physical Properties of Qianzhong Red Clay[D]. Guiyang:Guizhou University, 2009.
[14] 方薇, 杨果林.武(汉)广(州)客专武汉-韶关段红黏土工程特性研究[J]. 工程地质学报, 2009, 17(3):408-414. Fang Wei, Yang Guolin. Research on the Engineering Characteristics of Red Clay in Wuhan-Shaoguan Section of Wuhan (Han)-Guangzhou (Zhou) Passenger Train[J]. Journal of Engineering Geology, 2009, 17(3):408-414.
[15] 夏小兵.海口灵山红黏土工程特性研究[D]. 海口:海南大学, 2010. Xia Xiaobing. Research on Engineering Characteristics of Haikou Lingshan Red Clay[D]. Haikou:Hainan University, 2010.
[16] 廖义玲, 朱要强, 赵坤, 等.对贵州红黏土成因的再探讨[J]. 贵州大学学报(自然科学版), 2006, 23(4):361-365. Liao Yiling, Zhu Yaoqiang, Zhao Kun, et al. Re-Discussion on the Origin of Guizhou Red Clay[J]. Journal of Guizhou University (Natural Science Edition), 2006, 23(4):361-365.
[17] 祝卫东. 温州软土与台州软土工程特性及其比较分析[D].杭州:浙江大学, 2003. Zhu Weidong. Engineering Characteristics and Comparative Analysis of Wenzhou Soft Soil and Taizhou Soft Soil[D]. Hangzhou:Zhejiang University, 2003.
[18] 缪林昌. 软土力学特性与工程实践[M]. 北京:科学出版社, 2012. Miao Linchang. Soft Soil Mechanical Properties and Engineering Practice[M]. Beijing:Science Press, 2012.
[19] 杜冬菊, 杨爱武, 赵建军, 等. 天津滨海软土[M]. 北京:科学出版社, 2012. Du Dongju, Yang Aiwu, Zhao Jianjun, et al. Tianjin Binhai Soft Soil[M]. Beijing:Science Press, 2012.
[20] 刘用海. 宁波软土工程特性及其本构模型应用研究[D].杭州:浙江大学, 2008. Liu Yonghai. Engineering Characteristics of Ningbo Soft Soil and Its Constitutive Model Application[D]. Hangzhou:Zhejiang University, 2008.
[21] 徐少攀. 广东山区软土工程特性及软基处理应用研究[D].南昌:东华理工大学, 2015. Xu Shaopan. Engineering Characteristics of Soft Soil in Mountainous Areas of Guangdong and Application Research on Soft Foundation Treatment[D]. Nanchang:East China University of Technology, 2015.
[22] 湿陷性黄土地区建筑规范:GB50025-2004[S].北京:中国建筑工业出版社, 2004. Building Code for Collapsible Loess Areas:GB50025-2004[S]. Beijing:China Construction Industry Press, 2004.
[23] 李林翠, 李喜安, 洪勃, 等.不同埋深马兰黄土孔隙结构试验[J]. 吉林大学学报(地球科学版), 2019, 49(2):493-503. Li Lincui, Li Xi'an, Hong Bo, et al. Experiment on Pore Structures of Malan Loess at Different Buried Depth[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2):493-503.
[24] 贾俊平, 何晓群, 金勇进. 统计学[M]. 北京:中国人民大学出版社, 2014. Jia Junping, He Xiaoqun, Jin Yongjin. Statistics[M]. Beijing:China Renmin University Press, 2014.
[25] 李炳钊.概率统计[M]. 上海:同济大学出版社, 1994. Li Bingzhao. Probability and Statistics[M]. Shanghai:Tongji University Press, 1994.
[26] 刘汉生.应用数理统计基础[M]. 太原:山西科学教育出版社, 1987. Liu Hansheng. Applied Mathematical Statistics[M]. Taiyuan:Shanxi Science Education Press, 1987.
[1] 王梓龙, 裴向军, 张御阳, 张硕, 魏小佳, 王双. 松动岩体工程特性研究——以雅砻江楞古水电站松动岩体为例[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1376-1388.
[2] 董晋琨, 杨眉, 吴志远, 秦善, 王雨薇. 系统矿物学数据特征分析及数据库建设[J]. 吉林大学学报(地球科学版), 2019, 49(3): 727-736.
[3] 曹阳,滕彦国,刘昀竺. 宁夏吴忠市金积水源地地下水水质影响因素的多元统计分析[J]. 吉林大学学报(地球科学版), 2013, 43(1): 235-244.
[4] 胡大千, 刘越, 洪艳, 解晓婷. 东北地区上古生界泥质岩石共存黏土矿物[J]. J4, 2011, 41(5): 1458-1465.
[5] 李颖, 陈亚夫, 王洋, 仇东宁. 国家级油气资源数据库建设方案[J]. J4, 2010, 40(6): 1521-1524.
[6] 朱 华 吉. 地形数据库增量信息数据建模及其RDF描述[J]. J4, 2007, 37(1): 195-0199.
[7] 张伟红,赵勇胜,邸志强,郭晓东,张文静,张 楠. 基于ArcGIS Engine的地下水资源及其地质环境信息系统设计与实现[J]. J4, 2006, 36(04): 574-577.
[8] 姜晓轶,周云轩. 从空间到时间——时空数据模型研究[J]. J4, 2006, 36(03): 480-485.
[9] 梁秀娟, 林学钰, 于 军. 虚拟现实技术在水文地质研究中的应用[J]. J4, 2005, 35(05): 636-640.
[10] 管彦武, 金旭, 韩湘君,陈晓东,赵发兰. 基于GIS 平台的中国大地热流数据库[J]. J4, 2005, 35(04): 525-0528.
[11] 覃如府,许惠平,叶 娜,欧少佳,卢 焱. 中国岩石圈三维结构数据库地理信息系统设计[J]. J4, 2005, 35(04): 529-0534.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[3] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[4] 赵宏光,孙景贵,陈军强,赵俊康,姚凤良,段 展. 延边小西南岔富金斑岩铜矿床的含矿流体起源与演化——H,O,C,S,Pb同位素示踪[J]. J4, 2005, 35(05): 601 -606 .
[5] 孟元林,高建军,刘德来,牛嘉玉,孙洪斌,周玥,肖丽华,王粤川. 辽河坳陷鸳鸯沟地区成岩相分析与异常高孔带预测[J]. J4, 2006, 36(02): 227 -0233 .
[6] 曾昭发,吴燕冈,郝立波,王者江,黄 航. 基于泊松定理的重磁异常分析方法及应用[J]. J4, 2006, 36(02): 279 -0283 .
[7] 常秋玲,卢欣祥,刘东华,李明立. 东秦岭五朵山花岗岩体及金矿关系探讨[J]. J4, 2006, 36(03): 319 -325 .
[8] 马艳梅,崔启良,周强,黄伟军,刘冶,彭刚,邹广田. 橄榄石原位高温拉曼光谱研究[J]. J4, 2006, 36(03): 342 -345 .
[9] 郝琦,刘震,查明,李春霞. 辽河茨榆坨潜山太古界裂缝型储层特征及其控制因素[J]. J4, 2006, 36(03): 384 -390 .
[10] 曾道明,纪宏金,陈 满,胡大千,朱永正. 胶东山城金矿地质与地球化学变量的关系[J]. J4, 2006, 36(04): 511 -515 .