吉林大学学报(地球科学版) ›› 2022, Vol. 52 ›› Issue (6): 1982-1995.doi: 10.13278/j.cnki.jjuese.20220187

• 地质工程与环境工程 • 上一篇    下一篇

基于机器学习方法的地下水氨氮时空分布规律

杨国华1, 李婉露2,3, 孟博2   

  1. 1.河南地矿职业学院地质工程与资源勘察系,郑州451464
    2.吉林大学新能源与环境学院,长春130021
    3.蛟河市团山子水库管理中心,吉林蛟河132500
  • 收稿日期:2022-06-27 出版日期:2022-11-26 发布日期:2022-12-27
  • 基金资助:
    国家自然科学基金项目(41972247)

Spatiotemporal Distribution of Groundwater Ammonia Nitrogen Based on Machine Learning Methods#br#

Yang Guohua 1, Li Wanlu2,3, Meng Bo2   

  1. 1. Department of Geological Engineering and Resource Exploration,Henan Geology Mineral College, Zhengzhou 451464, China
    2. College of New Energy and Environment, Jilin University, Changchun 130021, China
    3. Management Center of Tuanshanzi Reservoir, Jiaohe City, Jiaohe 132500, Jilin, China
  • Received:2022-06-27 Online:2022-11-26 Published:2022-12-27
  • Supported by:
    the National Natural Science Foundation of China (41972247)

摘要: 氨氮是地下水中的主要无机污染物之一,其主要来自农业、工业和生活污染。过量的氨氮会危害人类健康。氨氮时空分布受气象、水文、水文地质和土地利用类型等因素的影响,因此,基于有限采样点的地下水氨氮分析会产生很大的不确定性。本研究以三江平原松花江流域为例,选取土壤有机质质量分数、土壤全氮质量分数、土壤阳离子交换容量(CEC)、土壤pH值、地下水埋深、包气带黏土层厚度和土地利用类型作为潜在的影响因素,建立拟合氨氮质量浓度的机器学习模型;在此基础上使用解释机器学习模型的SHAP(shapley additive explanations)方法识别显著的影响因素,并据此建立机器学习预测模型,对研究区地下水氨氮质量浓度进行数据插补,分析其时空变化规律。研究结果表明:地下水埋深、土地利用类型、CEC和土壤有机质质量分数是研究区地下水氨氮的主要影响因素;2011—2018年期间,研究区地下水氨氮处于Ⅰ—Ⅲ类水质级别的面积呈现增加趋势,面积占比从31%增加到87%,Ⅳ—Ⅴ类水的面积呈现减少趋势,面积占比从69%减少到13%,水质整体向好。

关键词: 氨氮, 空间插值, 机器学习, 随机森林, SHAP

Abstract:  Ammonia nitrogen is one of the main inorganic pollutants in groundwater, which mainly comes from agricultural, industrialy and domestic pollution. Excessive ammonia nitrogen will endanger human health. Temporal and spatial distribution of ammonia nitrogen is affected by factors such as meteorology, hydrology, hydrogeology, and land use type, so groundwater ammonia nitrogen analysis based on limited sampling points will generate great uncertainty. In this study, firstly, the Songhua River basin in the Sanjiang Plain was taken as an example, and soil organic matter mass fraction, soil total nitrogen mass fraction, soil cation exchange capacity (CEC), soil pH value, groundwater depth, thickness of clay layer in vadose zone and land use type were selected as potential influencing factors, a machine learning model for fitting ammonia nitrogen concentration was established. Secondly, significant influencing factors were identified using the shapley additive explanations (SHAP) method of interpreting machine learning models. Finally, a machine learning prediction model was established according to the significant influencing factors, and the data of groundwater ammonia nitrogen in the study area was interpolated. And the temporal and spatial variation of ammonia nitrogen was analyzed. The results showed that groundwater depth, land use type, CEC and soil organic matter mass fraction were the main influencing factors of groundwater ammonia nitrogen in this area. The area of groundwater ammonia nitrogen in the Ⅰ-Ⅲ water quality level showed an increasing trend. The proportion of area increased from 31% to 87%. And the area of Ⅳ-Ⅴ water quality showed a decreasing trend. The proportion of area decreased from 69% to 13%. The overall water quality was improved from 2011 to 2018.

Key words: ammonia, spatial interpolation, machine learning, random forest, SHAP

中图分类号: 

  • P641.2
[1] 王雪冬, 张超彪, 王翠, 朱永东, 王海鹏. 基于Logistic回归与随机森林的和龙市地质灾害易发性评价[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1957-1970.
[2] 侯贤沐, 王付勇, 宰芸, 廉培庆. 基于机器学习和测井数据的碳酸盐岩孔隙度与渗透率预测[J]. 吉林大学学报(地球科学版), 2022, 52(2): 644-653.
[3] 王明常, 刘鹏, 陈学业, 王凤艳, 宋玉莲, 刘瀚元. 基于GEE的东北三省城市建设用地扩张研究[J]. 吉林大学学报(地球科学版), 2022, 52(1): 292-.
[4] 卜 坤,张树文,杨久春,张宇博. 基于Delaunay三角网的Shapefile几何纠正算法与实现[J]. J4, 2008, 38(3): 521-0526.
[5] 梁秀娟,肖长来,盛洪勋,孟晓路,李生海,赵 峰. 吉林市地下水中“三氮”迁移转化规律[J]. J4, 2007, 37(2): 335-340.
[6] 姜 楠,马小凡,王鹤立. RTD对内循环三相生物流化床脱氨氮效率的影响[J]. J4, 2006, 36(04): 605-608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟元林,高建军,刘德来,牛嘉玉,孙洪斌,周玥,肖丽华,王粤川. 辽河坳陷鸳鸯沟地区成岩相分析与异常高孔带预测[J]. J4, 2006, 36(02): 227 -0233 .
[2] 曾昭发,吴燕冈,郝立波,王者江,黄 航. 基于泊松定理的重磁异常分析方法及应用[J]. J4, 2006, 36(02): 279 -0283 .
[3] 常秋玲,卢欣祥,刘东华,李明立. 东秦岭五朵山花岗岩体及金矿关系探讨[J]. J4, 2006, 36(03): 319 -325 .
[4] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[5] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[6] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[7] 马艳梅,崔启良,周强,黄伟军,刘冶,彭刚,邹广田. 橄榄石原位高温拉曼光谱研究[J]. J4, 2006, 36(03): 342 -345 .
[8] 郝琦,刘震,查明,李春霞. 辽河茨榆坨潜山太古界裂缝型储层特征及其控制因素[J]. J4, 2006, 36(03): 384 -390 .
[9] 曾道明,纪宏金,陈 满,胡大千,朱永正. 胶东山城金矿地质与地球化学变量的关系[J]. J4, 2006, 36(04): 511 -515 .
[10] 赵宏光,孙景贵,陈军强,赵俊康,姚凤良,段 展. 延边小西南岔富金斑岩铜矿床的含矿流体起源与演化——H,O,C,S,Pb同位素示踪[J]. J4, 2005, 35(05): 601 -606 .