吉林大学学报(地球科学版) ›› 2023, Vol. 53 ›› Issue (3): 651-692.doi: 10.13278/j.cnki.jjuese.20230034

• 地质与资源 •    下一篇

试论中国东北部陆缘晚中生代浅成热液大规模成矿与深部地质过程对成矿制约

孙景贵1,刘阳1,徐智恺1,徐智涛2,褚小磊1,古阿雷3   

  1. 1.吉林大学地球科学学院,长春130061
    2.吉林省地震局,长春130117
    3.中国地质调查局天津地质调查中心,天津300170
  • 收稿日期:2023-03-10 出版日期:2023-05-26 发布日期:2023-05-26
  • 作者简介:孙景贵(1961—),男,教授,博士生导师,主要从事大陆边缘内生金属矿床成矿理论研究与找矿实践工作,E-mail:sunjinggui@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(42072085,41172072,40772052,40472050,41390444);中国地质调查局项目([2023] 02-23-06);国家重点研发计划项目(2017YFC0601306)

 Large-Scale Epithermal Mineralization of Late Mesozoic and the Constraints of Deep Geological Processes on Mineralization in the Continental Margin of NE China

Sun Jinggui1, Liu Yang1, Xu Zhikai1, Xu Zhitao2, Chu Xiaolei1, Gu Alei3   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China
    2. Jilin Earthquake Agency, Changchun 130117, China
    3. Tianjin Center of Geological Survey, China Geological Survey, Tianjin 300170, China
  • Received:2023-03-10 Online:2023-05-26 Published:2023-05-26
  • Supported by:
    Supported by the National Natural Science Foundation of China (42072085, 41172072, 40772052, 40472050, 41390444), the Project of China Geological Survey ([2023] 02-23-06) and the National Key Research and Development Program of China (2017YFC0601306)

摘要: 浅成热液矿床是有色和贵金属以及铟等稀散关键金属矿产资源的重要来源,并以其具有指示深部斑岩成矿潜力的特征,长期以来倍受国内外地质学家关注和研究。中国东北部陆缘是我国浅成热液金属矿床发育的地区之一,该区广泛发育浅成热液金、银铅锌铜多金属矿床,依据成矿地质特征将这些矿床划分为低硫化型(LS)、中硫化型(IS)、高硫化型(HS)三类,成矿作用发生在晚中生代晚侏罗世—早白垩世火山盆地和边缘花岗杂岩隆起区,并依据成矿时代划分4个阶段,分别为(1)151~141 Ma、(2)140~131 Ma、(3)123~120 Ma和(4)110~100 Ma。其中:第1阶段发育在大兴安岭东坡,以大规模浅成热液HS铜多金属成矿为特色;第2阶段发育在大兴安岭西坡,以浅成热液LS-IS银铅锌大规模成矿为特色;第3阶段发育在大兴安岭北麓小兴安岭之间和延边以及华北北缘中段辽西地区,以浅成热液IS铜金和LS碲金成矿为特色;第4阶段成矿作用广泛发育在大兴安岭北端小兴安岭北麓饶河东宁延边一带。随成矿时间变化,从早到晚成矿从大兴安岭东坡迁移至大兴安岭西坡、华北陆台北缘(辽西+延边)大兴安岭东坡北段(黑河)→大兴安岭北段小兴安岭完达山太平岭延边,矿种上表现为由铜多金属→银铅锌→铜金+碲金→金(±锑)+金铜大规模成矿演化规律;形成环境分别适值晚中生代古太平洋板块向欧亚大陆东端俯冲、挤压、转换伸展地壳减薄过程的不同时段,除延边地区为中基性火山喷发-浅成就位晚期成矿外,成矿发生在各阶段双峰式火山喷发-浅成就位晚期。从其与斑岩型铜钼成矿的角度分析,早期浅成热液银铅锌铜成矿具有与斑岩成矿构成斑岩钼-浅成热液银铅锌成矿系统和浅成热液低硫化型银-中硫化型铅锌-高硫化型铜多金属-斑岩型铜钼成矿构成斑岩钼铜-浅成热液银铅锌成矿系统;中期和晚期浅成热液金成矿具有与富金斑岩型铜矿构成富金斑岩型铜-浅成热液中硫化型铜金成矿系统和富金斑岩型铜-浅成热液中硫化型铜金-高硫化型金(铜)成矿系统,而浅成热液低硫化型碲金、锑金和金矿床是否为独立成矿系统尚待研究取证。成矿整体受晚侏罗世开始向早白垩世过渡俯冲薄片后撤、地壳减薄而引发的幔源玄武岩浆底侵和相应的底侵下地壳岩浆控制,特别是底侵玄武岩浆受相应的下地壳物质参与程度以及岩浆房分离结晶时间所制约。

关键词: 浅成热液大规模成矿作用, 成矿结构, 成矿系统, 地球动力学背景, 中国东北部陆缘

Abstract: Epithermal deposits are important sources of nonferrous and precious metals as well as rare and critical metal resources such as indium. Due to their vectors toward deep porphyry mineralization, they have attracted the attentions of global geologists. The continental margin of Northeast China is one of the areas where epithermal ore deposits are widespread, characterized by epithermal Au and Ag-Pb-Zn-Cu polymetallic deposits being occur. According to the deposit geology, these epithermal-type deposits in Northeast China were divided into three types, low-sulfidation type (LS), intermediate-sulfidation type (IS) and high-sulfidation type (HS). The mineralization occurred in the Late Jurassic to Early Cretaceous volcanic basins and uplift areas spatially close to granite complex margins, comprising four separated mineralizationstages as a function of time, including (1) 151 to 141 Ma, (2) 140 to 131 Ma, (3) 123 to 120 Ma, and (4) 110 to 100 Ma. Stage 1 is restricted in the eastern portion of the Great Xing’an Range, characterized by regional epithermal HS copper polymetallic deposits. Stage 2 is developed in the western portion of the Great Xing’an Range, where large-scale epithermal LS-IS Ag-Pb-Zn mineralization. Stage 3 occurs in middle portion between the north of the Great Xing’an Range and the Lesser Xing’an Range and in Yanbian and western Liaoning, characterized by epithermal IS Cu and LS Te-Au mineralization. Stage 4 occurs in the Northern Great Xing’an Range-the Lesser Xing’an Range-Raohe-Dongning-Yanbian area. There is a younger mineralization time from the eastern portion of the Great Xing’an Range-the western portion of the Great Xing’an Range-the northern margin of the North China platform (Liaoxi+Yanbian)-the northern margin of the eastern portion of the Great Xing’an Range (Heihe) to the northern portion of the Great Xing’an Range-the Lesser Xing’an Range-Wanda Mountains-Taiping Mountains-Yanbian. There is a transition in mineralization type, from Cu polymetallic to Ag-Pb-Zn to Cu-Au + Te-Au to Au (± Sb) +large-scale Au and Cu. The tectonic environments for the various mineralization are related to the episodic subduction of ate Mesozoic Paleo-Pacific plate towards the eastern end of Eurasia, in which there is a transition from compressional to crustal extensional conditions. Except the mineralization in the Yanbian area occurring in the late stage of intermediate-basic volcanic eruption-hypabyssal emplacement, the remnant mineralization formed in the late stage of bimodal volcanic eruption-hypabyssal emplacement. Considering the genetic relation between epithermal metallic and porphyry Cu and Mo mineralization, the early-stage epithermal Ag-Pb-Zn-Cu mineralization and the coeval porphyry mineralization constitute the porphyry Mo-epithermal Ag-Pb-Zn system, whereas the epithermal LS Ag-IS Pb-Zn-HS Cu polymetallic and porphyry Cu-Mo mineralization constitute the porphyry Mo-Cu-epithermal Ag-Pb-Zn hydrothermal system. Similarly, the intermediate- and late-stage epithermal Au mineralization and Au-rich porphyry Cu mineralization constitute the Au-rich porphyry Cu-epithermal IS Cu-Au hydrothermalsystem and the Au-rich porphyry Cu-epithermal IS Cu-Au-epithermal HS Au (Cu) hydrothermal system. Nevertheless, more evidence is needed to clarify whether the epithermal LS Te-Au, Sb-Au, and Au deposits are individual ore system or not. Late Mesozoic epithermal ore systems are the results  the underplating of mantle-sourced basaltic magmas and their interactions with lower-crustal magmas during a roll-back of subducting slab and a thinning crust episode from Late Jurassic to Early Cretaceous.

Key words:  , large-scale epithermal mineralization, mineralization frames, ore system, geodynamic setting, continental edge of Northeast China

中图分类号: 

  • P611
[1] 于晓飞, 吕志成, 孙海瑞, 李永胜, 袁慧香, 杜泽忠, 公凡影, 吕鑫, 杜轶伦, 王春女. 全国整装勘查区成矿系统研究与矿产勘查新进展[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1261-1288.
[2] 程家龙, 崔子良, 李俊. 云南省保山市西邑大型铅锌隐伏矿床找矿预测地质模型[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1450-1461.
[3] 曾庆栋, 刘建明, 禇少雄, 郭云鹏, 高帅, 郭理想, 翟媛媛. 大兴安岭南段多金属矿成矿作用和找矿潜力[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1100-1123.
[4] 韩世炯,孙景贵,邢树文,张增杰,柴鹏,杨帆,邱殿明. 中国东北部陆缘内生金矿床成因类型、成矿时代及地球动力学背景[J]. 吉林大学学报(地球科学版), 2013, 43(3): 716-733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!