吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (4): 1396-1405.doi: 10.13278/j.cnki.jjuese.20230097

• 地球探测与信息技术 • 上一篇    下一篇

基于粗-细网络模型分步训练的地震数据重建方法

葛康建1,王长鹏1,张春霞2,张讲社2,熊登3   

  1. 1.长安大学理学院,西安 710064
    2.西安交通大学数学与统计学院,西安 710049
    3.东方地球物理公司物探技术研究中心,河北 涿州 072751
  • 收稿日期:2023-04-17 出版日期:2024-07-26 发布日期:2024-07-26
  • 通讯作者: 王长鹏(1985-),男,副教授,硕士生导师,主要从事图像处理研究,E-mail: cpwang@chd.edu.cn
  • 作者简介:葛康建(1996-),男,硕士研究生,主要从事地震数据处理方面研究,E-mail: kjge@chd.edu.cn
  • 基金资助:
    国家自然科学基金项目(12001057);长安大学中央高校基础研究基金(300102122101)

Seismic Data Reconstruction Method Based on Coarse-Refine Network Model with Stepwise Training

Ge Kangjian 1, Wang Changpeng 1, Zhang Chunxia 2, Zhang Jiangshe 2, Xiong Deng 3   

  1. 1. School of Science, Chang’an University, Xi’an 710064, China
    2. School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
    3. Research &Development Center, BGP, Zhuozhou 072751, Hebei, China
  • Received:2023-04-17 Online:2024-07-26 Published:2024-07-26
  • Supported by:
    the National Natural Science Foundation of China (12001057) and the Fundamental Research Funds for the Central Universities in Chang’an University (300102122101)

摘要: 由于地形等复杂条件的限制,叠前地震数据在空间上存在不完整或不规则分布的情况,导致数据出现缺失或混淆等现象。近年来,基于卷积神经网络的方法已经广泛应用于缺失地震数据重建工作。然而一步训练过程的网络模型不足以重建具有宽振幅范围的缺失地震数据,低振幅缺失部分的重建结果仍需改进。因此本文提出一种具有分步训练过程的粗-细网络模型。该模型由粗网络和细网络组成,分步恢复宽振幅范围内的缺失地震数据。在细网络中引入离散小波变换代替池化操作,其可逆性在上采样阶段有利于保留细节特征。模型采用混合损失函数重建缺失信号的真实细节。粗网络的初步恢复结果经过掩码操作处理后输入到细网络,细网络进一步精确恢复缺失部分的低振幅信号。实验结果表明,与残差网络(ResNet)、U型网络(U-Net)和多级小波卷积神经网络(MWCNN)的重建方法相比,本文方法在合成数据和真实数据上展现出更卓越的重建性能:在缺失75%的合成数据上,信噪比为18.818 5 dB;在缺失50%的真实数据上,信噪比为12.255  1 dB。在消融研究中,本文模型重建的均方误差为1.689 3×10-4,信噪比为19.284 6 dB,峰值信噪比为 43.743 5 dB,结构相似性为0.984 1,均优于其他三组对照实验。

关键词: 粗-细网络, 混合损失, 离散小波变换, 地震数据重建

Abstract: Due to the limitation of complex conditions such as topography, the pre-stack seismic data are spatially incomplete or irregularly distributed, resulting in phenomena such as missing or confusing data. In recent years, methods based on convolutional neural networks have been widely used in the reconstruction of missing seismic data. However, the network model of one-step training process is not enough to reconstruct the missing seismic data with a wide amplitude range, and the reconstruction results of the low-amplitude missing part still need to be improved. Therefore,  a coarse-fine network model with a stepwise training process is proposed in this paper. The model consists of a coarse network and a fine network to recover the missing seismic data with a wide amplitude range in a step-by-step process. Discrete wavelet transform is introduced in the fine network instead of pooling operation, and its reversibility facilitates the preservation of detailed features in the up-sampling stage. Using a hybrid loss function, the model reconstructs the true details of the missing signals. The preliminary recovery results of the coarse network are processed by masking operation and input to the fine network, which further accurately recovers the low amplitude signal of the missing part. The experimental results show that compared with the reconstruction methods of residual network (ResNet), U-shaped network (U-Net) and multilevel wavelet convolutional neural network (MWCNN), the method in this paper demonstrates superior reconstruction performance on both synthetic and real data: the signal-to-noise ratio is 18.818 5 dB  on synthetic data with 75% missing, and 12.255 1 dB on real data with 50% missing. In the ablation study, the mean square error of the model reconstruction in this paper is1.689 3×10-4, the signal-to-noise ratio is 19.284 6 dB, the peak signal-to-noise ratio is 43.743 5 dB, and the structural similarity index is 0.984 1, all of which are better than the other three sets of control experiments.

Key words: coarse-refine network, hybrid loss, discrete wavelet transform, seismic data reconstruction

中图分类号: 

  • P631.4
[1] 杨帆, 王长鹏, 张春霞, 张讲社, 熊登.

基于联合加速近端梯度和对数加权核范数最小化的地震数据重建 [J]. 吉林大学学报(地球科学版), 2023, 53(5): 1582-1592.

Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周燕,郑培玺,王铁夫,张延洁. 招平断裂带上盘金矿床氢氧同位素地质特征[J]. J4, 2007, 37(4): 668 -0671 .
[2] 范晓敏,李舟波. 裂缝性碳酸盐岩储层声波时差曲线的波动和增幅分析[J]. J4, 2007, 37(1): 168 -0173 .
[3] 郭智奇, 刘财, 冯晅, 韩颜颜, 王晓欢. 各向异性衰减与AVO分析[J]. J4, 2010, 40(2): 432 -438 .
[4] 滕吉文,田有,刘财,韩立国. 中国双相沉积盆地、古老结晶基底与东北地区深层潜在油气藏[J]. J4, 2008, 38(4): 527 -0552 .
[5] 刘洪林,李海山. ICA及其在气液两相流辨识中的应用[J]. J4, 2009, 39(1): 31 -0036 .
[6] 李发文, 冯平, 张超. 天津北三河地区垂向耦合产流模型及应用[J]. J4, 2011, 41(2): 459 -464 .
[7] 史彦尧, 宋新民, 郝志海, 俞宏伟. 基于沉积微相-岩石相建立砾岩油藏测井参数解释模型[J]. J4, 2010, 40(3): 707 -712 .
[8] 夏学惠, 袁家忠, 郗国庆, 梁中朋. 新疆大西沟杂岩体地球化学及铁磷矿床特征[J]. J4, 2010, 40(4): 879 -885 .
[9] 王小敏,陈昭年,樊太亮,余腾孝,曹自成,何海. 巴麦地区晚石炭世碳酸盐岩台内滩储层综合评价[J]. 吉林大学学报(地球科学版), 2013, 43(2): 371 -381 .
[10] 宋晶, 王清, 夏玉斌, 陈允进, 陈慧娥, 苑晓青. 真空预压处理高黏粒吹填土的物理化学指标[J]. J4, 2011, 41(5): 1476 -1480 .