吉林大学学报(地球科学版) ›› 2023, Vol. 53 ›› Issue (6): 1950-1968.doi: 10.13278/j.cnki.jjuese.20230247

• 地球探测与信息技术 • 上一篇    下一篇

地热资源与地震活动共生深部驱动机制研究现状与展望

韩江涛1, 2,牛璞1,刘立家1,吴懿豪1,辛中华1,李卓阳1, 3,贾晓东3   

  1. 1.吉林大学地球探测科学与技术学院,长春130026
    2.地球信息探测仪器教育部重点实验室(吉林大学),长春130026
    3.辽宁省地震局,沈阳110031
  • 出版日期:2023-11-26 发布日期:2023-12-13
  • 基金资助:
    吉林省科技发展计划项目(20220101152JC);辽宁省科学事业公益研究基金(软科学研究计划)(2023JH4/10700060);吉林大学“学科交叉融合创新”项目(JLUXKJC2021ZZ11)

 Research Status and Prospect of Deep Driving Mechanism of Co-Occurrence of Geothermal Resources and Seismic Activity

Han Jiangtao 1, 2, Niu Pu1, Liu Lijia1, Wu Yihao1, Xin Zhonghua1, Li Zhuoyang1, 3, Jia Xiaodong3   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
    2. Key Laboratory of Geophysical Exploration Equipment, Ministry of Education of China (Jilin University), 
    Changchun 130026, China
    3. Liaoning Earthquake Agency,Shenyang 110031,China
  • Online:2023-11-26 Published:2023-12-13
  • Supported by:
    the Project of Jilin Province Science and Technology Development (20220101152JC), Liaoning Provincial Science Public Welfare Research Fund (Soft Science Research Program) (2023JH4/10700060) and the Interdisciplinary Integration and Innovation Project of Jilin University (JLUXKJC2021ZZ11)

摘要: 地球内部地质过程及其相互作用不仅控制了全球地质格局的形成演化,也控制着地热资源的形成和地震活动的发生。本文通过系统调研及归纳总结,系统讨论地热资源与地震活动的共生深部驱动机制。首先,总结了全球高温地热带及大型/超大型地震带的形成背景,大多数高温地热与大型地震在空间分布上具有重合性,形成于活跃的板块边缘,而板内常形成中低温地热且周缘伴随地震活动;其次,总结了地热资源及地震活动共生的深部驱动要素,发现流体及断裂构造在热能和地震的释放中起着至关重要的作用,是地热资源与地震活动深部主要的控制要素;再次,总结了地热资源与地震活动深部地球物理探测成果,表明大地电磁等方法可揭示地热与地震形成的同源关系与因果关系,地热与地震源于深部物质与能量的交换;最后,对地热资源与地震活动的共生深部驱动机制研究方法及发展方向进行了展望。

关键词: 地热资源, 地震活动, 共生机制, 深部控热要素, 深部地球物理

Abstract:  The geological processes and their interactions in the earth not only control the formation and evolution of global geological patterns, but also control the formation of geothermal resources and the occurrence of seismic activities. Through systematic investigation and summary, this paper systematically discusses the symbiotic deep driving mechanism of geothermal resources and seismic activities. Firstly, the background of the formation of global high-temperature geothermal and large/ultra-large seismic zones are summarized. Most high-temperature geothermal and large earthquakes overlap in spatial distribution and are formed  at  active plate margins, while medium-low-temperature geothermal is often formed in  plates and accompanied by seismic activities. Secondly, the deep driving factors of the symbiosis between geothermal resources and seismic activity are summarized, and it is found that fluid and fault structure play a crucial role in the release of heat energy and earthquake, and are the main controlling factors of geothermal resources and seismic activity in deep depth. Thirdly , the results of deep geophysical exploration of geothermal resources and seismic activity are summarized, indicating that the homology and causality relationship between geothermal and earthquake can be revealed by magnetotelluric methods, and geothermal and earthquake are derived from the exchange of deep matter and energy. Finally, the research methods and development direction of the deep driving mechanism of the co-occurrence of geothermal resources and seismic activities are prospected.

Key words:  , geothermal resources, seismic activity, symbiosis mechanism, deep heat-control factors, deep geophysics

中图分类号: 

  • P631
[1] 冯波, 刘曦遥, 王学鹏, 冯守涛, 刘帅, 崔振鹏.

埕宁隆起区寒武系—奥陶系岩溶热储资源评价 [J]. 吉林大学学报(地球科学版), 2023, 53(5): 1521-1533.

[2] 许天福, 陈敬宜, 冯波, 姜振蛟. 地热资源开发过程中潜在地下水环境问题[J]. 吉林大学学报(地球科学版), 2023, 53(4): 1149-1162.
[3] 孙明行, 王瑞湖, 管彦武, 刘德民. 广西陆域干热型地热资源潜力估算[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1302-.
[4] 安百州, 曾昭发, 闫照涛, 张代磊, 于朝阳, 赵勇, 杜亚男. 鄂尔多斯盆地西缘热储构造模式及地热资源分布特征[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1286-.
[5] 冯波, 崔振鹏, 赵璞, 刘鑫, 胡子旭. 基于T2WELL的U型地热井供暖潜力数值模拟[J]. 吉林大学学报(地球科学版), 2022, 52(2): 560-570.
[6] 张延军, 余海, 李建明, 于子望, 张佳宁. 深部水热型地热潜力区的GIS预测模型——以土耳其西安纳托利亚地区为例[J]. 吉林大学学报(地球科学版), 2016, 46(3): 855-864.
[7] 孟宪纲,薄万举,刘志广,刘勇,畅柳,李朝柱,王子平. 芦山7.0级地震与巴颜喀拉块体中东段的活动性[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1705-1711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖长来,梁秀娟,崔建铭,兰盈盈,张君,李书兰,梁瑞奇,郑策. 确定含水层参数的全程曲线拟合法[J]. J4, 2005, 35(06): 751 -0755 .
[2] 孙永河,付晓飞,吕延防,付广,阎冬. 地震泵抽吸作用与油气运聚成藏物理模拟[J]. J4, 2007, 37(1): 98 -0104 .
[3] 嵇艳鞠, 栾卉, 李肃义, 万玲, 王远, 许洋铖, 李丽, 林君. 全波形时间域航空电磁探测分辨率[J]. J4, 2011, 41(3): 885 -891 .
[4] 柳波, 黄志龙, 王玫玫, 张建波, 陈建琪. 吐哈盆地胜北构造带油气成藏过程[J]. J4, 2011, 41(4): 1006 -1012 .
[5] 伍登浩, 高顺宝, 郑有业, 田坎, 张永超, 姜军胜, 余泽章, 黄鹏程. 西藏班公湖—怒江成矿带南侧矽卡岩型铜多金属矿床S、Pb同位素组成及成矿物质来源[J]. 吉林大学学报(地球科学版), 2018, 48(1): 70 -86 .
[6] 谢忠雷,陈卓,孙文田,尹波. 不同茶园茶叶氟含量及土壤氟的形态分布[J]. J4, 2008, 38(2): 293 -0298 .
[7] 贾军涛,王璞珺,邵 锐,程日辉,张 斌,侯景涛,李金龙,边伟华. 松辽盆地东南缘营城组地层序列的划分与区域对比[J]. J4, 2007, 37(6): 1110 -1123 .
[8] 王永在, 姚德, 李功胜, 王志国. 淄博市大气降尘矿物组合特征及其环境意义[J]. J4, 2010, 40(6): 1429 -1434 .
[9] 丛源, 赵鹏大, 陈建平, 董庆吉. 中国铝土矿床品位吨位模型[J]. J4, 2009, 39(6): 1042 -1048 .
[10] 丛峰, 林仕良, 谢韬, 李再会, 邹光富, 梁婷. 滇西腾冲-梁河地区花岗岩锆石稀土元素组成和U-Pb同位素年龄[J]. J4, 2010, 40(3): 573 -580 .