吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (1): 188-198.doi: 10.13278/j.cnki.jjuese.20230353

• 地质工程与环境工程 • 上一篇    下一篇

水化-冻融耦合作用下大理岩蠕变长期强度

赵越1,2, 牛心玉1, 齐晓磊3,华玉涵4   

  1. 1.辽宁工程技术大学矿业学院,辽宁 阜新 123000
    2.辽宁工程技术大学创新实践学院,辽宁 阜新 123000
    3.辽宁省有色地质一○三队有限责任公司,辽宁 丹东 118008
    4.中国建筑材料工业地质勘查中心辽宁总队,沈阳 110004
  • 收稿日期:2023-12-27 出版日期:2025-01-26 发布日期:2025-02-07
  • 作者简介:赵越(1995-),男,副教授,博士,主要从事地质资源与地质工程领域方面的研究,E-mail: zhaoyue9501@163.com
  • 基金资助:
    国家自然科学基金项目(51704139);中国科协青年托举工程项目(2023QNRC001);辽宁省教育厅基本科研项目(青年项目)(JYTQN2023212));辽宁省经济社会发展研究课题(2024lslqnrckt-017,2024lslybwzzkt-002)

Creep Long-Term Strength of Marble Under Coupling Effect of Hydration Freezing-Thaw

Zhao Yue1,2,Niu Xinyu1,Qi Xiaolei3,Hua Yuhan4   

  1. 1. Mining Institute, Liaoning Technical University, Fuxin 123000, Liaoning, China
    2. College of Innovation and Practice, Liaoning Technical University,Fuxin 123000, Liaoning, China
    3. Liaoning Province Nonferrous Geology 103 Team Co.,Ltd., Dandong 118008,Liaoning,China
    4.  Liaoning Team of Geological Survey Center of China Building Materials Industry, Shenyang 110004, China
  • Received:2023-12-27 Online:2025-01-26 Published:2025-02-07
  • Supported by:
    the National Natural Science Foundation of China (51704139),the Young Elite Scientists Sponsorship Program by CAST (2023QNRC001),the Basic Scientific Research Project of Liaoning Provincial Department of Education (Youth Project) (JYTQN2023212) and the Economic and Social Development Research Project of Liaoning Province (2024lslqnrckt-017,2024lslybwzzkt-002)

摘要: 为合理确定大理岩在水化-冻融耦合作用下的蠕变长期强度σs,以鄂西北地区某露天边坡为研究背景,以酸、中、碱三种溶液环境和不同冻融循环次数为试验控制因素,首先开展了大理岩单轴压缩试验和单轴压缩蠕变试验,然后采用过渡蠕变法、等时应力-应变曲线簇法、稳态蠕变速率-应力关系法、强度-破坏时间关系法求取了大理石长期强度,最后提出了两种新方法——基于应力-应变曲线的长期强度预测方法和改进的稳态蠕变速率-应力关系法,并对各方法进行了对比。结果表明:1)在同一冻融循环次数下,酸性环境下的瞬时强度和长期强度均最小,碱性次之,中性最大。 2)采用过渡蠕变法、等时应力-应变曲线簇法、稳态蠕变速率-应力关系法、基于应力-应变曲线的长期强度预测方法、改进的稳态蠕变速率-应力关系法得到研究区大理岩在不同溶液环境和冻融循环次数下的长期强度平均值分别为46.70、41.21、39.74、43.92、43.67 MPa。3)本文提出的基于应力-应变曲线的长期强度预测方法无需开展耗时较长的蠕变试验,仅通过压缩试验确定的应力-应变曲线便可快速预测岩石长期强度;改进的稳态蠕变速率-应力关系法相比传统方法,杜绝了取拐点方式的较强主观性。

关键词: 水化-冻融, 大理岩, 蠕变, 长期强度, 瞬时强度, 单轴压缩试验, 单轴压缩蠕变试验

Abstract: In order to reasonably determine the creep long-term strength σs of marble under the coupling effect of hydration freeze-thaw, uniaxial compression tests and uniaxial compression creep test were carried out with three solution environments of acid, medium and alkali and different freeze-thaw cycles as the experimental control factors in an open-pit slope in northwest Hubei Province. Then, the long-term strength of marble was compared and analyzed by combining transition creep method, isothermal stress-strain curve cluster method, steady-state creep rate stress relationship method, strength failure time relationship method, and two new methods (long-term strength prediction method based on stress-strain curve and improved steady-state creep rate stress relationship method). The results show as follows: 1) under the same number of freeze-thaw cycles, the instantaneous and long-term strength under acidic environment is the smallest, followed by alkaline environment, and the neutral environment is the largest. 2) By using transition creep method, isothermal stress-strain curve cluster method, steady-state creep rate stress relationship method, long-term strength prediction method based on stress-strain curve, and improved steady-state creep rate stress relationship method, the average long-term strength values of the marble under different solution environments and freeze-thaw cycles is 46.70, 41.21, 39.74, 43.92 and 43.67 MPa, respectively. 3) The long-term strength prediction method based on stress-strain curve does not require time-consuming creep test, and can quickly predict the long-term strength of rocks based solely on the stress-strain curve determined by compression tests. Compared with traditional methods, the improved steady-state creep rate stress relationship method eliminates the strong subjectivity of taking inflection points.

Key words: hydration freeze-thaw, marble, creep, long-term strength, instantaneous strength, uniaxial compression test, uniaxial compression creep test

中图分类号: 

  • TU452
[1] 任思远, 倪万魁, 陈军廷, 拓文鑫, 杨珍珍. 基于分数阶理论的软泥岩一维次固结蠕变模型[J]. 吉林大学学报(地球科学版), 2024, 54(1): 242-252.
[2] 赵越, 司运航, 张译丹, 赵京禹. 水化-冻融耦合条件下大理岩蠕变损伤本构模型[J]. 吉林大学学报(地球科学版), 2024, 54(1): 231-241.
[3] 赵越, 李磊, 闫晗, 肖万山, 苏艳军. 水化-冻融耦合作用下大理岩单轴蠕变力学特性[J]. 吉林大学学报(地球科学版), 2023, 53(4): 1195-1203.
[4] 张虎, 张建明, 苏凯, 刘世伟. 冻土旁压试验与单轴试验对比[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1479-1484.
[5] 年廷凯,余鹏程,柳楚楠,陆淼嘉,刁美慧. 吹填粉砂土固结蠕变试验及模型[J]. 吉林大学学报(地球科学版), 2014, 44(3): 918-924.
[6] 张虎, 张建明, 苏凯, 刘世伟. 高温-高含冰量冻土原位旁压蠕变试验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1950-1957.
[7] 熊良宵,李天斌,杨昌斌,虞利军. 层状岩体单轴和双轴压缩蠕变特性的数值试验[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1539-1548.
[8] 徐仲元,范志伟,刘正宏,李世超,王挽琼,张超,马越,王英男. 内蒙集宁地区孔兹岩系中大理岩的形成时代----长英质片麻岩中LA-ICP-MS锆石U-Pb测年的证据[J]. 吉林大学学报(地球科学版), 2013, 43(3): 809-819.
[9] 张先伟, 王常明, 张淑华. 软土蠕变数据处理方法的对比分析[J]. J4, 2010, 40(6): 1401-1408.
[10] 王常明, 黄超, 张浩, 张先伟, 李军霞. 营口软土的固结不排水剪切蠕变特性[J]. J4, 2009, 39(4): 728-733.
[11] 张先伟,王常明, 王钢城,陈多才,马栋和. 黄石淤泥质土的剪切蠕变特性及模型研究[J]. J4, 2009, 39(1): 119-0125.
[12] 杨彩红,毛君,李剑光. 改进的蠕变模型及其稳定性[J]. J4, 2008, 38(1): 92-0097.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .