污染场地,土壤-地下水协同修复,阈值计算,解析解,耦合模拟 ," /> 污染场地,土壤-地下水协同修复,阈值计算,解析解,耦合模拟 ,"/> contaminated site, soil and groundwater synergistic remediation, threshold calculation, , analytic solution, coupled simulation,"/> <span class="cf0">某污染场地土壤与地下水协同修复阈值</span>

吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (4): 1288-1297.doi: 10.13278/j.cnki.jjuese.20240020

• 地质工程与环境工程 • 上一篇    下一篇

某污染场地土壤与地下水协同修复阈值

王锦博1,贺志毅2,王亚楠3,程诗雨1,刘明柱1   

  1. 1. 中国地质大学(北京)水资源与环境学院,北京 100083

    2. 浙江广川工程咨询有限公司,杭州 310020

    3. 天津市地质研究和海洋地质中心,天津 300160

  • 收稿日期:2024-01-19 出版日期:2025-07-26 发布日期:2025-08-05
  • 通讯作者: 刘明柱(1971—),男,教授,博士生导师,主要从事地下水污染评估与数值模拟方面的研究,E-mail: liumz@cugb.edu.cn
  • 作者简介:王锦博(1999—),男,硕士研究生,主要从事污染水文地质学方面的研究,E-mail: a15039949716@163.com
  • 基金资助:
    国家重点研发计划项目(2020YFC1807)

Synergistic Remediation Thresholds for Soil and Groundwater in Contaminated Site

Wang Jinbo1, He Zhiyi2, Wang Yanan3, Cheng Shiyu1, Liu Mingzhu1   

  1. 1. School of Water Resource and Environment, China University of Geosciences (Beijing), Beijing 100083, China

    2. Zhejiang Guangchuan Engineering Consulting Co.,Ltd., Hangzhou 310020, China

    3. Tianjin Geological Research and Marine Geology Centre, Tianjin 300160, China

  • Received:2024-01-19 Online:2025-07-26 Published:2025-08-05
  • Supported by:

    the National Key Research and Development Program of China (2020YFC1807)

摘要:

科学确定土壤修复基准对土壤与地下水协同治理具有重要的指导意义,现有研究多假设污染源直接作用于饱和带,未能充分考虑污染物在包气带迁移产生的滞后、衰减及源强变化特征。本文将污染物在土壤中的一维垂向运移解析解和地下水中的三维运移解析解进行耦合,构建污染物在土壤-地下水系统中的迁移转化模型,系统分析污染物迁移转化影响因素对土壤与地下水协同修复阈值的影响机制。结果表明:不考虑土壤与地下水协同修复时,按现行标准中第一类用地的土壤筛选值,苯和氯苯修复阈值分别为1与68 mg/kg;考虑土壤与地下水协同修复时,以下游地下水合规点水质达标为目标,利用该方法计算出的土壤与地下水协同修复阈值分别为0.150和150.000 mg/kg。不考虑土壤与地下水协同修复,可能导致该场地土壤修复不足或过度修复问题。

关键词: 污染场地')">

污染场地, 土壤-地下水协同修复, 阈值计算, 解析解, 耦合模拟

Abstract:

It is scientifically significant to establish soil remediation standards for the synergistic management of soil and groundwater. Previous studies often assumed that contaminant sources directly affect the saturated zone, with little consideration for the lag, attenuation, and variations in pollutant sources during migration in the vadose zone. Addressing this issue, in this paper coupling the one-dimensional vertical transport analytical solution of pollutants in soil with the three-dimensional transport analytical solution of pollutants in groundwater, the influence of factors affecting pollutant migration and transformation on the synergistic remediation threshold of soil and groundwater is investigated. The results indicate that without considering the synergistic remediation of soil and groundwater, based on the screening values of soil for the first category of land use in current standards, benzene and chlorobenzene should be remediated to 1 mg/kg and 68 mg/kg respectively. Considering the synergistic remediation of soil and groundwater and aiming for compliance with downstream groundwater quality standards, the calculated synergistic remediation thresholds for soil and groundwater are 0.150 mg/kg and 150.000 mg/kg respectively. Failure to consider the synergistic remediation of soil and groundwater may result in inadequate or excessive soil remediation at the site.

Key words: contaminated site')">contaminated site, and groundwater synergistic remediation')"> soil and groundwater synergistic remediation, calculation')"> threshold calculation,  , solution')"> analytic solution, simulation')"> coupled simulation

中图分类号: 

  • TP311.1
[1] 晋浩颖, 程大伟, 詹红兵, 杨胜科, 张晓斐, 张琳, .

考虑毛细饱水带的非承压含水层中仿Theis井流模型及解析解 [J]. 吉林大学学报(地球科学版), 2025, 55(2): 563-574.

[2] 雷怡, 帅飞翔, 孙红月, 张泽坤, 熊超. 边坡负压排水非稳定流研究[J]. 吉林大学学报(地球科学版), 2022, 52(1): 162-.
[3] 刘国庆, 吴时强, 范子武, 周志芳, 谢忱, 乌景秀, 柳杨. 回灌与回扬物理过程的解析推导及灌压变化规律[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1799-1807.
[4] 汤井田, 辛会翠, 王冉. 点电源下复杂角域地形影响及校正[J]. J4, 2012, 42(1): 254-261.
[5] 叶栋成,慕山, 陶月赞. 地下水补给对河流水质模型的影响[J]. J4, 2008, 38(4): 644-0648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .