吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (6): 1904-1922.doi: 10.13278/j.cnki.jjuese.20250292

• 地质工程与环境工程 • 上一篇    下一篇

复杂条件钻采技术研究现状与发展趋势

郭威1,2,王元1,2   

  1. 1.吉林大学建设工程学院,长春130026
    2.自然资源部复杂条件钻采技术重点实验室,长春130026
  • 出版日期:2025-11-26 发布日期:2025-12-30
  • 作者简介:郭威(1979—), 男, 教授, 博士生导师, 主要从事非常规地质能源钻采理论与技术装备研发方面的研究, E-mail: guowei6981@jlu.edu.cn
  • 基金资助:
    国家科技重大专项(2024ZD1000800,2024ZD1000803)

 A Review and Outlook on Drilling and Production Technology Under Complex Conditions

Guo Wei1,2, Wang Yuan1,2   

  1. 1. College of Construction Engineering, Jilin University, Changchun 130026, China
    2. Key Lab of Ministry of Natural Resources for Drilling and Exploitation Technology in Complex Conditions, Changchun 
    130026, China
  • Online:2025-11-26 Published:2025-12-30
  • Supported by:
    Supported by the National Science and Technology Major Project (2024ZD1000800,2024ZD1000803)

摘要: 为突破复杂条件下钻采理论与技术瓶颈,增强我国在战略资源开发、新能源利用、极端环境探测等领域的竞争力,本文首先明确复杂条件的科学内涵,将其划分为复杂地质条件、复杂地表环境、复杂资源条件、复杂环保要求四个维度。其次系统梳理国内外该领域的核心文献、典型工程实践案例及关键技术突破成果,从深部钻探技术与装备、极地科学钻探技术、非常规能源与矿产钻采技术、仿生钻采理论与技术、多工艺冲击回转钻进技术五个方向,深入剖析该领域当前存在的技术瓶颈。在此基础上,结合深地、深海、深空、极地等国家重大战略需求,提出从深地极端地质、跨境极端环境、低质难采资源、严苛环保约束四个维度出发,实现从“被动应对复杂”到“主动驾驭极端”的跨越性技术突破路径。研究成果可为国家资源安全保障、能源结构转型升级与科技强国战略实施提供系统的技术发展框架与决策支撑。

关键词: 复杂条件, 钻采技术, 深地探测, 极地探测, 非常规能源与矿产, 仿生, 多工艺冲击回转

Abstract:  To address the theoretical and technological bottlenecks in drilling and extraction under complex utilization, and to enhance China’s competitiveness in fields such as strategic resource development, new energy and extreme environment exploration, this study defines the concept of complex conditions, and separates it into four dimensions, namely, complex geological conditions, complex surface environments, complex resource resource conditions, and complex environmental protection requirements. It systematically reviews core literature, typical engineering practice cases, and achievements in key technological breakthroughs in the field of drilling and extraction under complex conditions at home and abroad. From five perspectives such as deep drilling technology and equipment, polar scientific drilling technology, unconventional energy and mineral drilling and extraction technology, bionic drilling and extraction theory and technology, and multi-process percussion-rotary drilling technology, the study conducts an in-depth analysis of the technological bottlenecks in this field. Aligning with major national strategic demands in the deep earth, deep sea, deep space, and polar regions, breakthrough pathways are proposed to shift from “passive response to complexity” to “proactive mastery of extremes”, based on four dimensions of deep earth extreme geology, cross-border extreme environments, low-quality and hard-to-extract resources, and stringent environmental constraints. This research provides a systematic technological framework and decision-making support for safeguarding national resource security, facilitating the transformation and upgrading of the energy structure, and implementing the strategy of building China into a leading science and technology nation.


Key words: complex conditions, drilling and production technology, deep earth exploration, polar exploration, unconventional energy and minerals, bionic, multi-process impact rotation

中图分类号: 

  • TE662.2
[1] 高科, 高红通, 谭现锋, 赵长亮, 李梦. 仿生异型齿钻头在干热岩钻探中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1804-1809.
[2] 林君, 蒋川东, 段清明, 王应吉, 秦胜伍, 林婷婷. 复杂条件下地下水磁共振探测与灾害水源探查研究进展[J]. J4, 2012, 42(5): 1560-1570.
[3] 何龙飞, 孙友宏, 高科, 刘宝昌, 徐良, 王传留. 仿生非光滑螺旋钻头的设计及试验[J]. J4, 2009, 39(2): 300-0304.
[4] 徐良,孙友宏,高科. 仿生孕镶金刚石钻头高效碎岩机理[J]. J4, 2008, 38(6): 1015-1019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .