J4

• 水文·工程·环境 • 上一篇    下一篇

模糊数学在郑州市水资源价值评价中的应用

钦丽娟,曹剑峰,平建华,姜纪沂,王 楠,沈媛媛,李 升   

  1. 吉林大学 环境与资源学院,吉林 长春 130026
  • 收稿日期:2004-09-23 修回日期:1900-01-01 出版日期:2005-07-26 发布日期:2005-07-26
  • 通讯作者: 钦丽娟

Application of Fuzzy Mathematics in Evaluation of Water Resources Value in Zhengzhou City

QIN Li-juan, CAO Jian-feng,PING Jian-hua,JIANG Ji-yi, WANG Nan, SHEN Yuan-yuan, LI Sheng   

  1. College of Environment and Resources, Jilin University, Changchun 130026, China
  • Received:2004-09-23 Revised:1900-01-01 Online:2005-07-26 Published:2005-07-26
  • Contact: QIN Li-juan

摘要: 水资源的价值主要体现在水资源的稀缺性、资源产权及劳动价值等方面。由于影响水资源价值的不确定因素众多,宜采用模糊数学方法进行评价。依据所建立的模糊数学模型,针对郑州市的具体情况选取水质、水资源量、国民生产总值、人口密度作为评价因子,对其水资源价值进行了计算,计算得到郑州市水资源价格为2.11 元/m3。目前郑州市的平均水价为1.28 元/m3,明显偏低,应进行水价改革。

关键词: 水资源价值, 模糊数学, 水价

Abstract: The connotation of water resources value contains the scarcity of water resources, the property right of resources and working value. It should be evaluated by fuzzy mathematics since there are many uncertain factors affecting the water resources value. The water resources value in Zhengzhou City has been calculated by an established fuzzy mathematical model with evaluation factors such as water quality, water resources quantity, gross national product and population desity according to the real situation of Zhengzhou City. The result of water resources price in Zhengzhou is 2.11 yuan(¥)/m3. At present the average water price in the city is only 1.28 yuan(¥)/m3, which is low obviously. Therefore water price reform is necessary.

Key words: water resources value, fuzzy mathematics, water price

中图分类号: 

  • P641.8
[1] 杜尙海, 苏小四, 吕航. 不同降水丰枯遭遇条件下滹沱河地下水库人工补给效果[J]. J4, 2010, 40(5): 1090-1097.
[2] 陈力,梁海安,张文娟,荣帆. 模糊数学方法在城市工程地质环境区划中的应用--以抚顺市城区为例[J]. J4, 2008, 38(5): 837-0840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!