J4

• 水文·工程·环境 • 上一篇    下一篇

岩溶裂隙地下水流数学模型求解的有限体积法及应用

马瑞杰1,李欣2   

  1. 1.吉林大学 数学学院,吉林 长春 130026;2.吉林大学 建设工程学院,吉林 长春 130026
  • 收稿日期:2005-01-20 修回日期:1900-01-01 出版日期:2005-11-26 发布日期:2005-11-26
  • 通讯作者: 马瑞杰

The Finite Element Volume Method and Application of Mathematic Model of Karst Groundwater Flow

MA Rui-jie1, LI Xin2   

  1. 1.College of Mathematics,Jilin University,Changchun 130026,China; 2.College of Construction Engineering,Jilin University,Changchun 130026,China
  • Received:2005-01-20 Revised:1900-01-01 Online:2005-11-26 Published:2005-11-26
  • Contact: MA Rui-jie

摘要: 岩溶裂隙介质可视为双重孔隙度介质。根据水流连续性原理、质量守衡和达西定律,建立了裂隙-岩溶承压含水层非稳定流双重介质数学模型,采用有限体积法对其求解,并以深圳龙岗区为例对模型进行验证。结果表明,计算模型与实际水文地质条件比较接近,计算水位与实测水位相吻合。

关键词: 岩溶裂隙, 双重孔隙, 有限体积法, 等值线图

Abstract: The karst fissure medium can be regarded as dual medium of porosity. According to continuity principle of flow, law of conservation of mass and Darcy’s law, the dual medium mathematical model of unsteady flow in fissurekarst artesian aquifer is established, and the finite volume method is adopted to get the solution, taking Longgang district in Shenzhen as an example to verify this model. The consistency of the calculated groundwater level and the measured shows this simulation model can well reflect the actual hydrogeological condition.

Key words: karst fissure, dual medium, finite volume method, contour map

中图分类号: 

  • P641.2
[1] 陈辉, 尹敏, 殷长春, 邓居智. 大地电磁三维正演聚集多重网格算法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 261-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!