陈南祥1,2,曹连海2,李梅1,黄强1
CHEN Nan-xiang1,2, CAO Lian-hai2,LI Mei1,HUANG Qiang1
摘要: 影响矿坑充水的因素多且复杂,矿坑涌水量预测模型主要考虑降水、地表水、引水灌溉等影响因素,因变量和自变量的关系比较复杂。将偏最小二乘回归与神经网络耦合,建立了矿坑涌水预报模型。模型将自变量利用偏最小二乘回归处理,提取对因变量影响强的成分,既可以克服变量之间的相关性问题,又可以降低神经网络的输入维数,并能较好地解决非线性问题,提高了模型的学习能力和表达能力。以河南鹤壁八矿涌水量为例,建立了基于偏最小二乘回归和神经网络耦合的矿坑涌水量预测模型。计算验证表明,该类模型具有较高的预报精度和推广应用价值。
中图分类号:
[1] | 张代磊, 黄大年, 张冲. 基于遗传算法优化的BP神经网络在密度界面反演中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 580-588. |
[2] | 王宇, 卢文喜, 卞建民, 侯泽宇. 三种地下水位动态预测模型在吉林西部的应用与对比[J]. 吉林大学学报(地球科学版), 2015, 45(3): 886-891. |
[3] | 杜润林, 刘展. 基于粒子群优化的细胞神经网络油气重力异常信息提取[J]. 吉林大学学报(地球科学版), 2015, 45(3): 926-933. |
[4] | 潘保芝, 石玉江, 蒋必辞, 刘丹, 张海涛, 郭宇航, 杨小明. 致密砂岩气层压裂产能及等级预测方法[J]. 吉林大学学报(地球科学版), 2015, 45(2): 649-654. |
[5] | 刘博, 肖长来, 梁秀娟. SOM-RBF神经网络模型在地下水位预测中的应用应用[J]. 吉林大学学报(地球科学版), 2015, 45(1): 225-231. |
[6] | 刘贺,张弘强,刘斌. 基于粒子群优化神经网络算法的深基坑变形预测方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1609-1614. |
[7] | 鲁功达,晏鄂川,王环玲,王雪明,谢良甫. 基于岩石地质本质性的碳酸盐岩单轴抗压强度预测[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1915-1921. |
[8] | 徐黎明,王清,陈剑平,潘玉珍. 基于BP神经网络的泥石流平均流速预测[J]. 吉林大学学报(地球科学版), 2013, 43(1): 186-191. |
[9] | 周晓华, 林君, 陈祖斌, 焦健, 郭同健. 改进的神经网络反演微动面波频散曲线[J]. J4, 2011, 41(3): 900-906. |
[10] | 朴金石, 殷琨, 范黎明. 利用神经网络法预测风动潜孔锤钻速[J]. J4, 2009, 39(5): 882-886. |
[11] | 张晨,陈剑平,肖云华. 基于神经网络对有限元强度折减法分析[J]. J4, 2009, 39(1): 114-0118. |
[12] | 郄瑞卿,薛林福,王满,王丽华. SOFM储层综合评价方法及其在延吉盆地的应用[J]. J4, 2009, 39(1): 168-0174. |
[13] | 秦胜伍,陈剑平. 隧道围岩压力的神经网络时间序列分析[J]. J4, 2008, 38(6): 1005-1009. |
[14] | 郝立波, 蒋艳明,陆继龙,孙淑梅,白荣杰. 利用多目标地球化学数据识别第四纪沉积物类型--基于概率神经网络方法[J]. J4, 2008, 38(6): 1081-1084. |
[15] | 邱道宏,陈剑平,阙金声,安鹏程. 基于粗糙集和人工神经网络的洞室岩体质量评价[J]. J4, 2008, 38(1): 86-0091. |
|