J4

• 地球物理·勘查技术·工业测试 • 上一篇    下一篇

面向对象的遥感图像分类方法研究

杨长保1,丁继红2   

  1. 1.吉林大学 地球探测科学与技术学院,长春 130026;2.吉林大学 计算机公共教学中心,长春 130026
  • 收稿日期:2005-11-05 修回日期:1900-01-01 出版日期:2006-07-26 发布日期:2006-07-26
  • 通讯作者: 杨长保

Study of ObjectOriented Based Remote Sensing Image Classification

YANG Chang-bao1,DING Ji-hong2   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026,China;2.Center of Computer Commonality Teaching, Jilin University, Changchun 130026, China
  • Received:2005-11-05 Revised:1900-01-01 Online:2006-07-26 Published:2006-07-26
  • Contact: YANG Chang-bao

摘要: 影响遥感图像分类效果的主要因素之一是空间分辨率。通过融合多分辨率遥感图像,引入面向对象的思想,有效地克服了多光谱图像空间分辨率低的问题。该方法由图像分割和分类等一系列技术组成,首先用基于区域分割法则对正射校正SPOT图像进行分割,然后把它作为参考用最大似然法分类器和其他一些经验规则对TM图像进行分类。对土地覆盖图分类进行精度测试,取得了良好的应用效果。

关键词: 影像融合, 面向对象, 图像分类

Abstract: A limitation in efficiently applying image classification is often represented by the spatial resolution of the image. By merging the multi resolution remote sensing image, importing the object oriented based idea, it effectively renewed the low resolution problem of multispectral images. This method was made up of a series of image segmentation and classification technique. First, the orthograph revised SPOT image was segmented by applying a regionbased segmentation algorithm. Based this reference map, TM image was classified using the maximum likelihood classifier and additional empirical rules. Finally, the resulting land cover map was tested for accuracy and gained some effects.

Key words: image fusion, objectoriented, image classification

中图分类号: 

  • TP751
[1] 王明常, 张馨月, 张旭晴, 王凤艳, 牛雪峰, 王红. 基于极限学习机的GF-2影像分类[J]. 吉林大学学报(地球科学版), 2018, 48(2): 373-378.
[2] 李寅超, 李建松. 一种面向LUCC的时空数据存储管理模型[J]. 吉林大学学报(地球科学版), 2017, 47(1): 294-304.
[3] 李华朋, 张树清, 孙妍, 刘春悦. 集成多时相ETM+影像的证据推理湿地遥感分类[J]. J4, 2011, 41(4): 1246-1252.
[4] 付 哲,周云轩,刘殿伟,刘万崧. 基于特征的面向对象虚拟GIS数据模型设计与原型系统实现[J]. J4, 2006, 36(04): 647-652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!