J4 ›› 2010, Vol. 40 ›› Issue (2): 378-382.

• 地质工程与环境工程 • 上一篇    下一篇

基于人工神经网络的三峡库区丰都县水库塌岸预测

张文春1|2|陈剑平1,张丽2   

  1. 1.吉林大学 建设工程学院|长春 130026;2.吉林建筑工程学院 测绘与勘查工程学院|长春 130021
  • 收稿日期:2009-09-02 出版日期:2010-03-26 发布日期:2010-03-26
  • 通讯作者: 陈剑平(1957-),男,福建福州人,教授,博士生导师,主要从事工程地质方面的研究 E-mail:chenjpwq@126.com
  • 作者简介:张文春(1963-)|男|吉林双阳人|博士研究生|主要从事工程地质研究|E-mail:zhangwenchun@jliae.edu.cn
  • 基金资助:

    国家自然科学基金项目(40872170)

Reservoir Bank Collapse Prediction of Fengdu Couty in Reservoir Area of Three Gorges Based on Artificial Neural Network

ZHANG Wen-chun1,2, CHEN Jian-ping1, ZHANG Li2   

  1. 1.College of Constrnction Engineering|Jilin University|Changchun 130026|China;
    2.School of Surveying and Prospecting Engineering,Jilin Institute of Architecture and Civil Engineering,Changchun 130021,China
  • Received:2009-09-02 Online:2010-03-26 Published:2010-03-26

摘要:

为了建立一个适合于三峡库区的塌岸预测方法体系,采用具有处理非线性关系功能的人工神经网络方法对水库塌岸问题进行研究。通过训练、学习和仿真,获得预测正确率为97.2%的具有7-32-14网络结构的BP神经网络模型,采用该模型对蓄水位为175 m时丰都县各岸段进行塌岸预测,并将预测结果与传统经验公式计算法所得结果及实际监测数据进行对比。结果表明:基于人工神经网络的塌岸预测宽度与实际监测数据很接近,偏差在5 m以内;公式法计算结果与监测值平均偏差为15.9 m,而且对于部分坡段,公式法计算结果比实际监测值小8~11 m,没能预测出塌岸的真正范围。采用神经网络模型对丰都县水库进行塌岸预测,预测结果与实际监测数据平均偏差约3.8%,表明其预测结果可靠。

关键词: 三峡水库, 塌岸预测, 非线性, 神经网路

Abstract:

In order to establish an appropriate methodology of bank collapse prediction in the Three Gorges reservoir area, the article applied the artificial neural network method to study the bank collapse prediction. The method has the function of disposing the nonlinear relation. Through training, learning and simulation, it obtained the BP neural network model with a 7-32-14 network structure, and the correct prediction rate of it was 97.2%. Then  the model was used to forecast the reservoir bank collapse of Fengdu county when the water level was 175 m. Compared the forecast results with the traditional empirical formula calculation and the actual monitor data. The comparative results showed that the bank collapse prediction based on artificial neural network were very similar to the monitor data, and the deviation was less than 5 m. The average deviation of the formula calculation results and the monitor data was 15.9 m. For part of the slope sections, the formula calculation results were 8-11 meters,which was less than the actual monitor data. It failed to predict the true scope of bank collapse. In short, the average deviation of the bank collapse prediction results using artificial neural networks is about 3.8%. It is reliable and has higher precision.

Key words: Three Gorges reservoir, bank collapse prediction, non-liner, neural networks

中图分类号: 

  • P642.2
[1] 黄修东,束龙仓,崔峻岭,童坤,周庆鹏. 人工回灌物理堵塞特征试验及渗滤经验公式推导[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1966-1972.
[2] 代荣获,张繁昌,刘汉卿,李灿灿. 基于贝叶斯理论的逐次迭代非线性AVA反演方法[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2026-2033.
[3] 张延庆,杨庆丽, 高向宇. 带有复合摩擦阻尼系统的基础隔震结构分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 908-913.
[4] 束龙仓, 荆艳东, 黄修东, 余钟波, 王振龙. 改进的无作物潜水蒸发经验公式[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1859-1865.
[5] 张先伟, 王常明, 张淑华. 软土蠕变数据处理方法的对比分析[J]. J4, 2010, 40(6): 1401-1408.
[6] 骆祖江, 曾峰, 李颖. 地下水开采与地面沉降控制三维全耦合模型研究[J]. J4, 2009, 39(6): 1080-1088.
[7] 甘 杨,李 凡,李大华. 一维土层非线性地震反应分析的解析递推格式法[J]. J4, 2006, 36(04): 631-635.
[8] 吴亚东,赵文智,邹才能,李明,高建荣. 基于视速度的波场变换的叠前强相干噪音压制技术[J]. J4, 2006, 36(03): 462-467.
[9] 殷 文,印兴耀, 张繁昌. 基于并行遗传算法的地震属性优化研究[J]. J4, 2005, 35(05): 672-676.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!