J4 ›› 2012, Vol. 42 ›› Issue (1): 275-279.

• 地球探测与信息技术 • 上一篇    下一篇

基于不同小波变换与同态滤波结合的CBERS-02B卫星CCD图像的薄云去除

韩念龙1,2|刘闯1|庄立3,张巍4   

  1. 1.北京师范大学资源学院|北京100875;
    2.深圳市房地产评估发展中心|广东 深圳518034;
    3.北京师范大学地理学与遥感科学学院|北京100875;
    4.中国科学院深圳先进技术研究院,广东 深圳518055
  • 收稿日期:2010-04-20 出版日期:2012-01-26 发布日期:2012-01-26
  • 通讯作者: 刘闯(1948-),女,教授,博士生导师,主要从事全球变化数据、信息及其在综合自然地理学中的应用研究 E-mail:lchuang@igsnrr.ac.cn
  • 作者简介:韩念龙(1983-)|男|博士研究生|主要从事基于遥感与GIS的自然资源研究|E-mail:nl.han@siat.ac.cn
  • 基金资助:

    国家自然科学基金项目(70873117)

Removing Thin Cloud by Combining Wavelet Transforms and Homomorphic Filter in the CBERS-02B Image

HAN Nian-long1,2, LIU Chuang1, ZHUANG Li3,ZHANG Wei4   

  1. 1.College of Resources Science &|Technology, Beijing Normal University, Beijing100875, China;
    2.Center for Assessment and Development of Real Estate, Shenzhen518034,Guangdong|China;
    3.Department of Geography, Beijing Normal University, Beijing100875, China;
    4.Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen518055,Guangdong|China
  • Received:2010-04-20 Online:2012-01-26 Published:2012-01-26

摘要:

卫星CCD图像的去云处理对遥感信息的增强与提取有重要的意义,尤其是在云覆盖严重的低纬度地区。为去除CBERS-02B卫星CCD图像中薄云的影响,分别使用Mallat和à trous 2种小波变换对图像进行分解;利用同态滤波对2种小波分解图像的低频系数进行处理,衰减其低频信息;将处理后的小波低频系数与分解的高频系数进行小波重构,从而达到去云的目的。定量分析基于Mallat和à trous小波变换结合同态滤波法的去云结果表明,经à trous小波变换结合同态滤波法的去云影像所包含信息量大,细节信息丰富,去云效果较好。

关键词: CBERS-02B, 薄云去除, 小波变换, 同态滤波

Abstract:

It is important to remove cloud in the CCD images of satellite for enhancing and extracting remote sensing information,especially in low latitude areas. In order to remove thin cloud in the CBERS-02B CCD images, two different forms of wavelet transforms were used. Low-frequency coefficients that are decomposed by two wavelet transforms are processed by homomorphic filter separately for lowing its low-frequency information. Results is reconstructed with low-frequency coefficients and high-frequency coefficients which decomposed from Mallat and   trous wavelet transform. According to quantitative evaluation,   trous wavelet transform combining with homomorphic filter algorithm can produce good results in thin cloud removal with higher entropy and standard deviation. It also can retain a large amount of information and rich detail information.

Key words: CBERS-02B, cloud removal, wavelet transforms, homomorphic filter

中图分类号: 

  • TP75
[1] 谭晓迪, 黄大年, 李丽丽, 马国庆, 张代磊. 小波结合幂次变换方法在边界识别中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(2): 420-432.
[2] 赵利, 李理, 董大伟. 基于小波变换的盆地沉积-构造波动分析[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1227-1236.
[3] 李海山, 吴国忱, 印兴耀. 形态分量分析在去除地震资料随机噪声中的应用[J]. J4, 2012, 42(2): 554-561.
[4] 卢文喜, 陈社明, 王晨子, 刘磊, 贾洪玮, 吕德全. 基于小波变换的大安地区年降水量变化特征[J]. J4, 2010, 40(1): 121-127.
[5] 李红星,陶春辉,刘 财,邓显明,周建平,张金辉,顾春华,何拥华. 多频海底声学原位测试信号消除干扰研究[J]. J4, 2007, 37(5): 1034-1037.
[6] 房文静, 范宜仁,李霞,邓少贵. 基于测井数据小波变换的准层序自动划分[J]. J4, 2007, 37(4): 833-0836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!