J4 ›› 2012, Vol. 42 ›› Issue (3): 814-820.

• 地质工程与环境工程 • 上一篇    下一篇

漳州地热田基岩裂隙水系统温度分布特征

曾玉超|苏正|吴能友|王晓星,胡剑   

  1. 中国科学院广州能源研究所可再生能源与天然气水合物重点实验室|广州510640
  • 收稿日期:2011-05-29 出版日期:2012-05-26 发布日期:2012-05-26
  • 通讯作者: 吴能友 (1965-),男,研究员,主要从事天然气水合物成藏机制和增强型地热系统研究 E-mail:wuny@ms.giec.ac.cn
  • 作者简介:曾玉超(1986-)|男|博士研究生|主要从事增强型地热系统数值模拟研究|E-mail:zengyuc@126.com
  • 基金资助:

    中国科学院知识创新工程重要方向性项目(KGCX2-YW[CD*2]805);中科院广州能源所所长基金重大项目培育专项(y107a41001);中科院博士后启动基金(y107b11001)

Temperature Distribution Characteristics of Bedrock Fracture Groundwater System at Zhangzhou Geothermal Field

 ZENG Yu-chao, SU Zheng, WU Neng-you, WANG Xiao-xing, HU Jian   

  1. Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion|Chinese Academy of Sciences, Guangzhou510640, China
  • Received:2011-05-29 Online:2012-05-26 Published:2012-05-26

摘要:

为研究漳州地热田基岩裂隙水系统温度分布特征,建立了新的三维基岩裂隙水系统概念模型,并利用Fluent软件求解模型。结果表明:基岩裂隙热水温度场受到断裂区的强烈控制,在北东-南西向断裂中,强烈对流形成的高温热柱刺穿了基岩顶部形成热田高温中心;基岩热流在断裂区中部高温区达到最大,在北东-南西方向上最大值为343.02 mW/m2,在北西-南东方向最大值为368.72 mW/m2,并向边缘逐渐降低;第四系孔隙水的存在和运动使得地表热流的最大值和局部值降低。未来漳州热田应加强深部温度的测量研究。

关键词: 漳州地热系统, 温度分布, 基岩裂隙水, 数值分析

Abstract:

In order to research temperature distribution characteristics of bedrock fracture groundwater at Zhangzhou geothermal field, a new 3-D conceptual model for bedrock fracture groundwater is established and numerically solved by Fluent software. The results show the temperature distribution is strongly controlled by the fault-fracture system and a high temperature cylinder in the northwest-southeast fault formed by convection of hot water heats top surface of bedrock and thus forms the center high temperature area. The heat flux reaches maximum of 343.02 mW/m2 and 368.72 mW/m2 respectively at center high temperature areas, and reduces towards the edge of the geothermal field. The Quaternary pore water movement reduces the maximum and local heat flux. The future research on Zhangzhou geothermal field should focus on the deep temperature measurement.

Key words: Zhangzhou geothermal system, temperature distribution, bedrock fracture groundwater, numerical analysis

中图分类号: 

  • P641.135
[1] 施有志, 柴建峰, 林树枝, 李秀芳. 地下综合管廊边界条件对地震动力响应影响数值分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 213-225.
[2] 于子望,张延军,张庆,许天福. TOUGHREACT搭接FLAC3D算法[J]. 吉林大学学报(地球科学版), 2013, 43(1): 199-206.
[3] 徐黎明, 王清, 陈剑平, 栾海, 周福军. 二密滑坡形成机制[J]. J4, 2012, 42(4): 1104-1111.
[4] 武彩霞, 戴福初, 闵弘, 涂新斌, 邝国麟, 周跃峰. 台塬塬顶裂缝对黄土斜坡水文响应的影响[J]. J4, 2011, 41(5): 1512-1519.
[5] 陶波,佴磊,伍法权,郭改梅,柴建峰. 论静止侧压力对抗滑桩的作用[J]. J4, 2006, 36(05): 837-840.
[6] 甘 杨,李 凡,李大华. 一维土层非线性地震反应分析的解析递推格式法[J]. J4, 2006, 36(04): 631-635.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!