吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (1): 188-197.doi: 10.13278/j.cnki.jjuese.201501115

• 地质与资源 • 上一篇    下一篇

大兴安岭北部上古生界极低级变质温度——来自碳质物拉曼光谱的证据

胡大千, 王岩泉, 沙茜, 王春光, 陈旭, 马瑞   

  1. 吉林大学地球科学学院, 长春 130061
  • 收稿日期:2014-03-03 发布日期:2015-01-26
  • 作者简介:胡大千(1955), 男, 教授, 博士, 主要从事矿物学和岩石学研究, E-mail:hudaqian2510@sina.com
  • 基金资助:

    国家自然科学基金项目(41172039,41372042);中石化项目(GO800-06)

Very Low Grade Metamorphic Temperatures of the Upper Paleozoic Strata in Northern Daxing'anling Area, NE China:Evidence from Raman Spectrum Studies of Carbonaceous Materials

Hu Daqian, Wang Yanquan, Sha Qian, Wang Chunguang, Chen Xu, Ma Rui   

  1. Colloge of Earth Sciences, Jilin University, Changchun 130061, China
  • Received:2014-03-03 Published:2015-01-26

摘要:

使用Renishaw System-1000型激光拉曼光谱仪, 研究了大兴安岭北部上古生界泥质岩石碳质物的拉曼光谱特征及其对形成温度的表征, 探讨了拉曼光谱参数与镜质体反射率(Ro)的关系。研究表明:研究区上古生界泥质岩石碳质物不具有石墨的拉曼光谱谱带吸收峰, 揭示了地层的变质程度未达到低绿片岩相。利用此次经过完善建立的拉曼光谱地质温度计, 对大兴安岭北部上古生界泥质岩石变质温度的估算结果主要为270~320℃, 表明研究区上古生界遭受了极低级变质作用, 变质程度属近变质带。依据碳质物拉曼光谱参数与镜质体反射率的相互关系, 估算研究区有机质成熟度的Ro值主要分布为3.03%~4.23%, 与实测Ro值吻合, 表明有机质演化处于过成熟阶段, 泥质岩石具有生烃的能力, 部分层位可能具有形成油气资源的潜力。

关键词: 大兴安岭北部, 上古生界泥质岩石, 碳质物拉曼光谱, 镜质体反射率, 地质温度计, 极低级变质作用

Abstract:

Using the Renishaw System-1000 laser Raman spectrometer, authors have studied the laser Raman spectrum characteristics of the carbonaceous materials in pelitic rocks outcropped in northern Daxing'anling area and its indication to the metamorphic temperature. The relationship between the various parameters of the Raman spectrum and the vitrinite reflectance (Ro) of the carbonaceous materials is also discussed. The study shows that the carbonaceous material of Upper Paleozoic pelitic rock has not the Raman spectrum absorption peak of graphite, revealing its metamorphic grade below the low-greenschist facies. Using Raman spectroscopy constructed and proposed by Barker et al. (1986) and by Rahl et al.(2005), the metamorphic temperature of Upper Paleozoic pelitic rock in the studied area is estimated at 270℃ to 320℃, indicating the Paleozoic strata of the area have merely undergone very low grade metamorphism and metamorphic grade belongs to anchizone. Based on the relationship between the laser Raman spectrometer of carbonaceous materials and the vitrinite reflectance(Ro) proposed by Wang Y, et al.(2002), the Ro values (maturity of organic materials) of pelitic rocks are estimated to be from 3.03% to 4.23%, consistent with the measured values, showing that the evolution of organic matter of the area is at the over-mature stage, and the pelitic rocks in the area are capable to be generate the hydrocarbon generation and part of the them may have the potential for oil and gas resources.

Key words: Northern Daxing'anling area, Upper Paleozoic pelitic rock, Raman spectrum of carbonaceous material, vitrinite reflectance, geothermometer, very low grade metamorphism

中图分类号: 

  • P574.1

[1] Kübler B. Evaluation Quantitative du Métamorphism Par la Cristallinité de L'illite[J]. Bull Centre Rech Pau-SNPA, 1968, 2:385-397.

[2] Robinson D. Diagenesis and Low-Temperature Meta-morphism:Introduction[J]. Miner Maga, 1985, 49:301-303.

[3] 索书田, 毕先梅, 赵文霞, 等.右江盆地三叠纪岩层极低级变质作用及地球动力学意义[J]. 地质科学, 1998, 33(4):395-405. Suo Shutian, Bi Xianmei, Zhao Wenxia, et al. Very Low-Grade Metamorphism and Its Geodynamical Significance of Triassic Strata Within the Youjiang River Basin[J]. Scientia Geologica Sinica, 1998, 33(4):395-405.

[4] Frey M, Robinson D L. Low-Grade Metamorphism[M]. Oxford:Blackwell Science, 1999:10-226.

[5] Battaglia S, Leoni L, Sartor F. The KüBler Index in Late Diagenetic to Low-Grade Metamorphic Pelites:A Critical Comparison of Data from 10  and 5  Peaks[J]. Clay Clay Miner, 2004, 52(1):85-105.

[6] 毕先梅, 莫宣学.成岩-极低级变质-低级变质作用及有关矿产[J].地学前缘, 2004, 11(1):287-294. Bi Xianmei, Mo Xuanxue. Transition from Diagenesis to Low-Grade Metamorphism and Related Minerals and Energy Resources[J]. Earth Scince Frontiers, 2004, 11(1):287-294.

[7] 胡大千, 于介江.内蒙古东北地区上古生界伊利石研究[J].岩石学报, 2009, 25(8):2017-2022. Hu Daqian, Yu Jiejiang. Study of Illite in the Upper Paleozoic, in Northeastern Inner Monggolia[J]. Acta Petrologica Sinica, 2009, 25(8):2017-2022.

[8] 胡大千, 洪艳, 于介江. 吉林省东部石炭二叠系伊利石的成因标志[J].吉林大学学报:地球科学版, 2010, 40(5):1035-1040. Hu Daqian, Hong Yan, Yu Jiejiang. Genetic Chariciterics of Illite in the Carboniferous-Permian Pelitic Rocks in East Jilin Province[J]. Journal of Jilin University:Earth Science Edition, 2010, 40(5):1035-1040.

[9] 胡大千, 刘越, 洪艳, 等. 东北地区上古生界泥质岩石共存黏土矿物[J].吉林大学学报:地球科学版, 2011, 41(5):1458-1465. Hu Daqian, Liu Yue, Hong Yan, et al. Research of Coexisting Clay Minerals in the Upper Paleozoic Argillaceous Rocks in Northeast China[J]. Journal of Jilin University:Earth Science Edition, 2011, 41(5):1458-1465.

[10] 胡大千, 韩春元, 马瑞, 等.内蒙古锡林郭勒地区上古生界极低级变质作用:伊利石和镜质体反射率的证据[J].岩石学报, 2012, 28(9):3042-3050. Hu Daqian, Han Chunyuan, Ma Rui, et al. The Very Low Grade Metamorphism in the Upper Paleozoic in Xinlingol Area of Inner Mongolia, NE China:Evidence from Studies of Illite and Vitrinite Reflectance[J]. Acta Petrologica Sinica, 2012, 28(9):3042-3050.

[11] 于介江, 胡大千, 张嘉惠.黑龙江省上古生界伊利石的成因标志及其地质意义[J].吉林大学学报:地球科学版, 2012, 42(6):1817-1824. Yu Jiejiang, Hu Daqian, Zhang Jiahui. Genetic Chariciterics of the Illite from the Upper Paleozoic Group in Heilongjiang Province and Its Geological Significance[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(6):1817-1824.

[12] 胡凯, 刘英俊, Ronald W T, 等. 激光拉曼光谱碳质地温计及其地质应用[J].地质科学, 1993, 28(3):235-244. Hu Kai, Liu Yingjun, Ronald W T, et al. Laser Raman Carbon Geothermometer and Its Application to Mineral Exploration[J]. Scientia Geologica Sinica, 1993, 28(3):235-244.

[13] Beyssac O, Goffe B, Chopin C, et al. Raman Spectra of Carbonaceou Material in Metasediments:A New Geothermometer[J]. J Metamorph Geol, 2002, 20:859-871.

[14] Beyssac O, Bollinger L, Avouac J P, et al. Thermal Metamorphism in the Lesser Himalaya of Nepal Deterined from Raman Spectroscopy of Carbonaceous Material[J]. Earth Planet Sci Lett, 2004, 225:233-241.

[15] Rantitsch G, Grogger W, Teichert C, et al. Conversion of Carbonaceous Material to Graphite Within the Greywacke Zone of the Eastern Alps[J].International Journal of Earth Sciences, 2004, 93:959-973.

[16] Rahl J M, Anderson K M, Brandon M T, et al. Raman Spectroscopic Carbonaceous Material Thermometry of Low-Grade Metamorphic Rocks:Calibration and Application to Tectonic Exhumation in Crete[J]. Greece Earth Planet Sci Lett, 2005, 240:339-354.

[17] Beny-Bassez, Rouzaud J N. Characterization of Carbonaceous Materials by Correlated Electron and Optical Microscopy and Raman Microspectroscopy:Scanning Electron Microscopy[M]. Chicago:SEM Inc, 1985:119-132.

[18] Buseck P R, Huang B J. Conversion of Carbonaceous Material to Graphite During Metamorphism[J]. Geochimica et Cosmochimica Acta, 1985, 49:2003-2016.

[19] Wopenka B, Pasteris J D. Structural Characterization of Kerogens to Granulite-Facies Graphite:Applicability of Raman Microprobe Spectroscopy[J]. American Mineralogist, 1993, 78:533-557.

[20] Yui T F, Huang E, Xu J. Raman Spectrum of Carbonaceous Material:A Possible Metamorphic Grade Indicator for Low-Grade Metamorphic Rocks[J]. J Metamorph Geol, 1996, 14:115-124.

[21] Compagnini G, Puglisi O, Foti G. Raman Spectra of Virgin and Damaged Edge Planes[J]. Carbon, 1997, 35:1793-1797.

[22] Beyssac O, Goffe B, Petitet J P, et al.On the Characterization of Disorder and Heterogeneous Carbonaceous Materials by Raman Spectroscopy[J]. Spectrochimica Acta:Part A, 2003, 59:2267-2276.

[23] Jehlicka J, Urban O, Pokorny J. Raman Spectroscopy of Carbon and Solid Bitumens in Sedimentary and Metamorphic Rocks[J]. Spectrochimica Acta:Part A, 2003, 59:2341-2352.

[24] Nestler K, Dietrich D, Witke K, et al. Thermogravimetric and Raman Spectroscopic Investigations on Different Coals in Comparison to Dispersed Anthracite Found in Permineralized Tree Fern Psaroniussp[J]. J Mol Struct, 2003 (357/358/359/360/361/362):661-662.

[25] Quirico E, Rouzaud J N, Bonal L, et al. Maturation Grade of Coals as Revealed by Raman Spectroscopy:Progress and Problems[J]. Spectrochimica Acta:Part A, 2005, 61:2368-2377.

[26] JudiK K, Rantitsch G, Rainer T M, et al. Alpine Metamorphism of Organic Matter in Metasedimentary Rocks from Mt Medvednica (Croatia)[J]. Swiss J Geosci, 2008, 101:605-616.

[27] 董申保, 沈其韩, 孙大中, 等.中国变质地质图说明书[M].北京:地质出版社, 1986:1-37. Dong Shenbao, Shen Qihan, Sun Dazhong, et al. Specification of Metamorphic Geology Map of China[M]. Bejing:Geological Publishing House, 1986:1-37.

[28] 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M].北京:地质出版社, 1991:533-534. Bureau of Geology and Mineral Resources of Inner Monggolia Autonomous Region. Regional Geology of Inner Monggolia Autonomous Region[M]. Beijing:Geological Publishing House, 1991:533-534.

[29] 黑龙江省地质矿产局. 黑龙江省区域地质志[M].北京:地质出版社, 1993:502-503. Bureau of Gelogy and Minerarl Resources of Heilongjiang Province. Regional Geology of Heilongjiang Province[M]. Bejing:Geological Publishing House, 1993:502-503.

[30] 王成文, 金巍, 张兴洲, 等.东北及邻区晚古生代大地构造属性新认识[J].地层学杂志, 2008, 32(2):119-136. Wang Chengwen, Jin Wei, Zhang Xingzhou, et al. New Understanding of the Late Paleozoic Tectonics in Northeastern China and Adjacent Areas[J]. Journal of Stratigraphy, 2008, 32(2):119-136.

[31] 张兴洲, 周建波, 迟效国, 等.东北地区晚古生代构造-沉积特征与油气资源[J].吉林大学学报:地球科学版, 2008, 38(5):719-725. Zhang Xingzhou, Zhou Jianbo, Chi Xiaoguo, et al. Late Paleozoic Tectonic-Sedimentation and Petroleum Resources in Northeastern China[J]. Journal of Jilin University:Earth Science Edition, 2008, 38(5):719-725.

[32] 胡大千, 李洋, 王春光, 等.内蒙古东部上古生界伊利石K-Ar年龄及意义[J].高校地质学报, 2014, 20(增刊):165-166. Hu Daqian, Li Yang, Wang Chunguang, et al.K-Ar Dating of Illite and Its Significance in the Upper Paleozoic, in Eastern Inner Monggolia[J].Geological Journal of China Universities, 2014, 20(Sup.):165-166.

[33] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41:1-30.

[34] 汪洋, 胡凯. 应用激光喇曼光谱特征参数反映有机碳质的成熟度[J]. 矿物岩石, 2002, 22(3):57-60. Wang Yang, Hu Kai. Using Laser Raman Spectrum Parameters as Indicators of Maturation for Organic Carbon[J]. Mineral Petrol, 2002, 22(3):57-60.

[35] Katagiri G, Hideyuki I, Ishitani A. Raman Spectra of Graphite Edge Planes[J]. Carbon, 1988, 26:565-571.

[36] Wang A, Dhamelincourt P, Dubessy J, et al.Characterization of Graphite Alteration in an Uranium Deposit by Micro-Raman Spectroscopy, X-Ray Diffraction, Transmission Electron Microscopy and Scanning Electron Microscopy[J]. Carbon, 1989, 27:209-218.

[37] Pasteris J D, Wopenka B. Raman Spectra of Graphite as Indicators of Degree of Metamorphism[J]. Cana-dian Mineralogist, 1991, 29:1-9.

[38] Kagi H, Tsuchida I, Wakatsuki M, et al. Proper Understanding of Down-Shifted Raman Spectra of Natural Graphite:Direct Estimation of Laser-Induced Rise in Sample Temperature[J]. Geochimica et Cosmochimica Acta, 1994, 58:3527-3520.

[39] Marques M, Suarez Ruiz, Flores D, et al. Correlation Between Optical Chemical and Micro-Structural Parameters of High-Rank Coals and Graphite[J]. International J Coal Geol, 2009, 77:377-382.

[40] 段菁春, 庄新国, 何谋春.不同变质程度煤的激光拉曼光谱特征[J].地质科技情报, 2002, 21(2):65-68. Duan Jingchun, Zhuang Xinguo, He Mouchun.Cha-racteristics in Laser Raman Spectrum of Different Ranks of Coal[J]. Geological Science and Technology Information, 2002, 21(2):65-68.

[41] 何谋春, 吕新彪, 姚书振, 等. 沉积岩中残留有机质的拉曼光谱特征[J].地质科技情报, 2005, 24(3):67-69, 79. He Mouchun, Lü Xinbiao, Yao Shuzhen, et al. Raman Spectrum of Residual Organic Matter from Sedimentary Rocks[J]. Geological Science and Technology Information, 2005, 24(3):67-69, 79.

[42] Kelemen S R, Fang H L. Maturity Trends in Raman Spectra from Kerogen and Coal[J]. Energy Fuels, 2001, 15(3):653-658.

[43] Barker C E, Pawlewiez M J. The Correlation of Vitrinite Reflectance with Maximum Temperature in Humic Organic Matter[J]. Lecture Notes in Earth Science, 1986, 5:79-93.

[1] 张兴洲, 刘洋, 曾振, 张宏涛, 崔维龙. 大兴安岭北部±130 Ma火山岩的地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 1-13.
[2] 刘玉, 孙加鹏, 王献忠, 张文强, 杨华本, 梁中恺, 徐立明. 大兴安岭北部新林地区大乌苏混杂岩锆石U-Pb年代学、地球化学及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1383-1405.
[3] 郭宇飞, 杨言辰, 韩世炯, 谈艳, 薄军委. 大兴安岭北部凤凰山地区英云闪长岩地球化学特征与锆石U-Pb定年[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1406-1417.
[4] 孙巍,迟效国,潘世语,张蕊,权京玉,范乐夫,王利民. 大兴安岭北部新林地区倭勒根群大网子组锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2014, 44(1): 176-185.
[5] 尹志刚,张跃龙,杜玉春. 大兴安岭北部早白垩世上库力组流纹岩的地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2013, 43(3): 788-796.
[6] 于介江,胡大千,张嘉惠. 黑龙江省上古生界伊利石的成因标志及其地质意义[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1817-1824.
[7] 赵芝, 迟效国, 赵秀羽, 孙巍, 潘世语, 胡兆初. 大兴安岭北部红水泉组碎屑锆石LA-ICP-MS U-Pb年代学及其地质意义[J]. J4, 2012, 42(1): 126-135.
[8] 胡大千, 刘越, 洪艳, 解晓婷. 东北地区上古生界泥质岩石共存黏土矿物[J]. J4, 2011, 41(5): 1458-1465.
[9] 胡大千, 洪艳, 于介江. 吉林省东部石炭-二叠系伊利石的成因标志[J]. J4, 2010, 40(5): 1035-1040.
[10] 付 广,王国民,王有功. 贝尔凹陷布达特群垂直裂缝垂向封闭性演化特征[J]. J4, 2007, 37(5): 913-0918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!