吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (1): 240-246.doi: 10.13278/j.cnki.jjuese.201501206

• 地质工程与环境工程 • 上一篇    下一篇

半干旱区岩溶碳汇原位监测方法适宜性研究

黄奇波1,2, 覃小群1,2, 刘朋雨1,2, 康志强3, 唐萍萍1,2   

  1. 1. 中国地质科学院岩溶地质研究所, 广西 桂林 541004;
    2. 国土资源部/广西壮族自治区岩溶动力学重点实验室, 广西 桂林 541004;
    3. 广西壮族自治区地质调查院, 南宁 530023
  • 收稿日期:2014-03-06 发布日期:2015-01-26
  • 作者简介:黄奇波(1982), 男, 助理研究员, 主要从事岩溶水文地质科研工作, E-mail:qbohuang0108@163.com
  • 基金资助:

    国家自然科学基金项目(41302211);中国地质调查局项目(12120113005200)

Applicability of Karst Carbon Sinks Calculation Methods in Semi-Arid Climate Environment

Huang Qibo1,2, Qin Xiaoqun1,2, Liu Pengyu1,2, Kang Zhiqiang3, Tang Pingping1,2   

  1. 1. Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, Guangxi, China;
    2. Karst Dynamics Laboratory, MLR & GZAR, Guilin 541004, Guangxi, China;
    3. Guangxi Geology Survey, Nanning 530023, China
  • Received:2014-03-06 Published:2015-01-26

摘要:

选择正确的方法准确计算北方干旱半干旱岩溶区的岩溶碳汇量, 有助于提高我国岩溶碳汇效应估算精度和改进全球碳循环模型。利用水化学径流法和标准溶蚀试片法对山西马跑神泉域的岩溶碳汇量进行了计算, 结果表明, 标准溶蚀试片法计算出的流域碳汇量和碳汇强度为386.15 t/a和1.821 t/(km2·a), 水化学径流法的结果为2 084.08 t/a和9.83 t/(km2·a), 试片法计算结果仅为水化学径流法的1/5。试片溶蚀速率和土壤无机碳质量分数呈负相关关系, 进一步表明土壤无机碳质量分数高(是有机碳质量分数的2.85~5.06倍)是造成试片法计算结果偏小的主要原因:高含量的无机碳在半干旱气候条件下容易沉积, 从而使试片溶蚀速率偏小;流域边界清楚, 水化学和流量易于监测, 利用水化学径流法计算岩溶碳汇强度结果更为准确。因此, 在半干旱地区, 计算岩溶碳汇效应宜采用水化学径流法。

关键词: 岩溶碳汇, 水化学径流法, 溶蚀试片法, 溶蚀速率, 半干旱岩溶区

Abstract:

By choosing the appropriate method for accurately calculating the amount of karst carbon sink in arid and semiarid regions in Northern China, the estimation accuracy of China's karst carbon sink and global carbon cycle models can be improved. The results show that karst carbon sink intensity(1.821 t/(km2·a)) with the standard dissolution method is only 1/5 of that of the hydrochemistry-runoff method(9.83 t/(km2·a)) in the Mapao Spring Catchment, Shanxi Province by using the hydrochemical runoff method and standard dissolution method. The negative correlation between tablets dissolution rate and soil inorganic carbon further indicates that the high levels of soil inorganic carbon (2.85-5.06 times of organic carbon content) is the major cause for the smaller results by standard dissolution method. In semi-arid regions, the high inorganic carbon content was easily deposited, resulting in a low dissolution rate for the tablets. The water chemistry and flow is easy to be monitored for a clear boundary condition basin, so the results of karst carbon sink intensity with the hydrochemistry-runoff method is more accurate. Therefore, for calculating karst carbon sink intensity in the semi-arid regions, the hydrochemical-runoff method should be used.

Key words: karst carbon sink, hydrochemistry-runoff method, dissolution method, dissolution rate, semi-arid karst regions

中图分类号: 

  • P641.134

[1] 袁道先. 碳循环与全球岩溶[J].第四纪研究, 1993, 13(1):1-6. Yuan Daoxian. Carbon Cycle and Global Karst[J].Quaternary Sciences, 1993, 13(1):1-6.

[2] Jiang Z, Yuan D. CO2 Source-Sink in Karst Processes in Karst Areas of China[J]. Episodes, 1999, 22:23-35.

[3] Liu Z, Zhao J.Contribution of Carbonate Rock Wea-thering to the Atmospheric CO2 Sink[J]. Environ Geol, 2000, 39:1053-1058.

[4] 袁道先. "岩溶作用与碳循环"研究进展[J]. 地球科学进展, 1999, 14(5):425-431. Yuan Daoxian. Progress in the Study on Karst Processes and Carbon Cycle[J].Advance in Earth Sciences, 1999, 14(5):425-431.

[5] 邱冬生, 庄大方, 胡云锋, 等.中国岩石风化作用所致的碳汇能力估算[J]. 地球科学:中国地质大学学报, 2004, 29(2):177-190. Qiu Dongsheng, Zhuang Dafang, Hu Yunfeng, et al. Estimation of Carbon Sink Capacity Caused by Rock Weathering in China[J].Earth Science:Journal of China University of Geosciences, 2004, 29(2):177-190.

[6] Cao J H, Yang H, Kang Z Q. Preliminary Regional Estimation of Carbon Sink Flux by Carbonate Rock Corrosion:A Case Study of the Pearl River Basin[J]. Chinese Science Bulletin, 2011, 56:3766-3773.

[7] 覃小群, 刘朋雨, 黄奇波, 等.珠江流域岩石风化作用消耗大气/土壤 CO2量的估算[J].地球学报, 2013, 34(4):455-462. Qin Xiaoqun, Liu Pengyu, Huang Qibo, et al. Estimation of Atmospheric/Soil CO2 Consumption by Rock Weathering in the Pearl River Valley[J]. Acta Geoscientica Sinica, 2013, 34(4):455-462.

[8] Zhang Cheng. Carbonate Rock Dissolution Rates in Different Land Uses and Their Carbon Sink Effect[J]. Chinese Science Bulletin, 2011, 56(35):3759-3765.

[9] Corbel J. Erosion en Terrain Calcaire[J]. Annales Dégeographie, 1959, 67:97-120.

[10] Ellaway M, Smith D I, Gillieson D S, et al. Karst Water Chemistry-Limestone Ranges, Western Australia[J].Helictite, 1990, 28:25-36.

[11] Gabrovsek F.On Concepts and Methods for the Esti-mation of Dissolutional Denudation Rates in Karst Areas[J].Geomorphology, 2009, 106:9-14.

[12] Gams I. Comparative Research of Limestone Solution by Means of Standard Tablets(Second Preliminary Report of the Commission of Karst Denudation, ISU)[C]//8th International Congress of Speleology. Bowling Green, Kentucky:International Speleological Union, 1981:273-275.

[13] 刘再华. 碳酸盐岩岩溶作用对大气CO2沉降的贡献[J]. 中国岩溶, 2000, 19(4):293-300. Liu Zaihua. Contribution of Carbonate Rock Weathering to the Atmospheric CO2 Sink[J]. Carsologica Sinica, 2000, 19(4):293-300.

[14] 刘再华. 岩溶作用及其碳汇强度计算的"入渗-平衡化学法":兼论水化学径流法和溶蚀试片法[J].中国岩溶, 2011, 30(4):379-382. Liu Zaihua. "Method of Maximum Potential Dissolution" to Calculate the Intensity of Karst Process and the Relevant Carbon Sink:With Discussions on Methods of Solute Load and Carbonate-Rock-Tablet Test[J]. Carsologica Sinica, 2011, 30(4):379-382.

[15] 康志强, 袁道先, 常勇, 等. 岩溶碳汇的主控因子:水循环[J]. 吉林大学学报:地球科学版, 2011, 41(5):1541-1547. Kang Zhiqiang, Yuan Daoxian, Chang Yong, et al. The Main Controlling Factor of Karst Carbon Sequestration:About Water Cycle[J]. Journal of Jilin University:Earth Science Edition, 2011, 41(5):1541-1547.

[16] 章程, 谢运球, 吕勇, 等. 不同土地利用方式对岩溶作用的影响:以广西弄拉峰丛洼地岩溶系统为例[J]. 地理学报, 2006, 61(11):1181-1188. Zhang Cheng, Xie Yunqiu, Lü Yong, et al. Impact of Land-Use Patterns upon Karst Processes:Taking Nongla Fengcong Depression Area in Guangxi as an Example[J]. Acta Geographica Sinica, 2006, 61(11):1181-1188.

[17] 王冬银, 谢世友, 章程. 典型岩溶区不同土地利用方式下雨季、旱季岩溶作用研究[J].生态环境学报, 2009, 18(6):2366-2372. Wang Dongyin, Xie Shiyou, Zhang Cheng. Impact of Land-Use Patterns upon Karst Processesin Typical Karst Regions of Jinfo Mountain[J].Ecology and Environmental Sciences, 2009, 18(6):2366-2372.

[18] 李恩香, 蒋忠诚, 曹建华, 等. 广西弄拉岩溶植被不同演替阶段的主要土壤因子及溶蚀率对比研究[J].生态学报, 2004, 24(6):1131-1139. Li Enxiang, Jiang Zhongcheng, Cao Jianhua, et al. The Comparison of Properties of Karst Soil and Karst Erosion Ratio Under Different Successional Stages of Karst Vegetation in Nongla, Guangxi[J]. Acta Ecologica Sinica, 2004, 24(6):1131-1139.

[19] 袁道先, 刘再华. 碳循环与岩溶地质环境[M]. 北京:科学出版社, 2003. Yuan Daoxian, Liu Zaihua. Carbon Cycle and Karst Geologic Environment[M]. Beijing:Science Press, 2003.

[20] 蒋忠诚, 蒋小珍, 雷明堂. 运用GIS和溶蚀试验数据估算中国岩溶区大气CO2的汇[J].中国岩溶, 2000, 19(3):212-217. Jiang Zhongcheng, Jiang Xiaozhen, Lei Mingtang. Estimation of Atmospheric CO2 Sink of Karst Area in China Based on GIS and Limestone Tablet Loss Date[J]. Carsologica Sinica, 2000, 19(3):212-217.

[21] 徐胜友, 蒋忠诚. 我国岩溶作用与大气温室气体源汇关系的初步估算[J].科学通报, 1997, 42(9):953-956. Xu Shengyou, Jiang Zhongcheng. The Preliminary Estimate About Sources and Sinks of Atmospheric CO2 Caused by Karstification in China[J].Chinese Science Bulletin, 1997, 42(9):953-956.

[22] 许文强, 陈曦, 罗格平, 等. 土壤碳循环研究进展及干旱区土壤碳循环研究展望[J].干旱区地理, 2011, 34(4):614-620. Xu Wenqiang, Chen Xi, Luo Geping, et al. Progress of Research on Soil Carbon Cycle and Perspectives of Soil Carbon Cycle in Arid Region[J]. Arid Land Geography, 2011, 34(4):614-620.

[23] 梁永平, 王维泰, 段光武. 鄂尔多斯盆地周边地区野外溶蚀试验结果讨论[J].中国岩溶, 2007, 26(4):315-320. Liang Yongping, Wang Weitai, Duan Guangwu. Discussion on the Result of Field Corrosion Test Around Erdos Basin[J]. Carsologica Sinica, 2007, 26(4):315-320.

[24] 章典, 师长兴. 青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J].地质学报, 2002, 76(4):566-570. Zhang Dian, Shi Changxing. CO2 Partial Pressure, Karst Dissolution Rate and Karst Micro-Landforms on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 2002, 76(4):566-570.

[25] 王谦. 中国干旱、半干旱地区的分布及其主要气候特征[J].干旱地区农业研究, 1983, 1(1):11-24. Wang Qian. Distribution of the Arid and Semiarid Areas in China and Their Major Climatic Characteristics[J]. Agricultural Research in the Arid Areas, 1983, 1(1):11-24.

[26] 黄奇波, 覃小群, 刘朋雨, 等. 北方不同植被下土壤岩石试片的溶蚀速率及碳汇分析:以山西汾阳地区为例[J]. 中国岩溶, 2013, 32(3):258-265. Huang Qibo, Qin Xiaoqun, Liu Pengyu, et al. Analysis on Tablets Dissolution Rate and Carbon Sink Under Different Vegetation in North China Karst Area:A Case Study of Fenyang, Shanxi Province[J]. Carsologica Sinica, 2013, 32(3):258-265.

[27] 蒋忠诚, 袁道先, 曹建华, 等. 中国岩溶碳汇潜力研究[J].地球学报, 2012, 33(2):129-134. Jiang Zhongcheng, Yuan Daoxian, Cao Jianhua, et al. A Study of Carbon Sink Capacity of Karst Processes in China[J]. Acta Geoscientica Sinica, 2012, 33(2):129-134.

[28] 代杰瑞, 喻超, 张杰, 等.山东半岛蓝色经济区土壤有机碳储量及固碳潜力分析[J].吉林大学学报:地球科学版, 2014, 44(5):1659-1668. doi:10.13278/j.cnki.jjuese.201405209. Dai Jierui, Yu Chao, Zhang Jie, et al. Analysis on Soil Organic Carbon Storage and the Potential for Carbon Sequestration in the Blue Economic Zone of Shandong Peninsula[J]. Journal of Jilin University:Earth Science Edition, 2014, 44(5):1659-1668. doi:10.13278/j.cnki.jjuese.201405209.

[29] 李为, 余龙江, 周蓬蓬, 等. 西南岩溶区土壤微生物生态作用的初步研究[J]. 水土保持学报, 2004, 18(3):112-114. Li Wei, Yu Longjiang, Zou Pengpeng, et al. Preliminary Study on Soil Microbial Ecological Effect in Karst Areas of Southwest China:A Case of the Yaji Karst Experimental Site[J].Journal of Soil and Water Conservation, 2004, 18(3):112-114.

[1] 康志强, 袁道先, 常勇, 李清艳, 何师意, 严毅萍, 熊志斌. 岩溶碳汇的主控因子——水循环[J]. J4, 2011, 41(5): 1542-1547.
[2] 吴孔运,蒋忠诚,叶 晔. 不同植物群落对灰岩试块溶蚀速率的影响[J]. J4, 2007, 37(5): 967-0971.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!