吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (3): 899-907.doi: 10.13278/j.cnki.jjuese.201503205
姜光辉1,2, 郭芳1,2, 于奭1,2
Jiang Guanghui1,2, Guo Fang1,2, Yu Shi1,2
摘要:
为了认识水文地质条件与岩溶泉水化学之间的关系,以西南地区的6个典型岩溶水系统丫吉试验场S31号泉、毛村地下河、官村地下河、陈旗岩溶泉、青木关地下河以及金佛山水房泉为例进行研究。通过对比发现,在这些强烈非均质的山区裸露型岩溶水系统中,仪器能够实现自动化监测的电导率、温度和pH值等指标的水化学曲线存在差异。分析可知控制水化学变化的主要因素如下:首先是降雨补给引起系统的水量与碳酸盐岩溶解过程的变化;其次是CO2气体随降雨进入含水层,促进碳酸盐岩的溶解;最后是地表污染物的淋滤。当电导率、水温、pH曲线出现降低和碳酸盐岩矿物饱和指数下降时,反映的是岩溶水的稀释作用;当电导率曲线出现高峰时,反映的是岩溶水补给的CO2效应,此时水中二氧化碳分压(pCO2)升高;当场雨中水化学曲线的变化滞后于水文动态曲线时,反映的是岩溶管道的活塞流效应;与人类活动有关的NO3-等污染物质量浓度在降雨后出现高峰,反映土壤的降雨淋滤作用,并可能影响电导率的变化趋势。某个系统的水化学曲线趋向于经常出现某几种效应,并且彼此的类型不同,表明了降雨补给的面状渗流方式和集中灌入方式对岩溶水影响的强弱不同,以及系统在径流方式和调蓄机制上的差异。一般而言:以面状补给方式为主的系统,水化学曲线多表现为CO2效应,较少出现稀释作用;而岩溶发育强烈的系统,降雨补给受控于溶蚀裂隙和管道,其水化学曲线较多出现稀释作用,较少出现CO2效应;以管道为主要径流方式的系统易出现活塞流效应,而包气带厚度大和含水层储水能力强的系统水化学变化被减弱。
中图分类号:
[1] 郭芳,姜光辉,蒋忠诚. 中国南方岩溶石山地区不同岩溶类型的地下水与环境地质问题[J]. 地质科技情报, 2006, 25(1): 83-88. Guo Fang, Jiang Guanghui, Jiang Zhongcheng. Groundwater and Environmental Geological Problems in Different Kinds of Karst Environment System in Karst Rock Areas of South China[J]. Geological Science and Technology Information, 2006, 25(1): 83-88.[2] 姜光辉,于奭,常勇.利用水化学方法识别岩溶水文系统中的径流[J].吉林大学学报:地球科学版,2011,41(5):1535-1541. Jiang Guanghui, Yu Shi, Chang Yong. Identification of Runoff in Karst Drainage System Using Hydrochemical Method[J]. Journal of Jilin University: Earth Science Edition,2011,41(5):1535-1541.[3] 刘再华,李强,汪进良,等.桂林岩溶试验场钻孔水化学暴雨动态和垂向变化解译[J].中国岩溶, 2004, 23(3): 169-176. Liu Zaihua, Li Qiang, Wang Jinliang,et al. Interpretation of Borehole Storm-Scale and Vertical Hydrochemical Variations at the Guilin Karst Experimental Site[J]. Carsologica Sinica, 2004, 23(3): 169-176.[4] 何师意, Michele L, 章程,等. 高精度地下水示踪技术及其应用:以毛村地下河流域为例[J]. 地球学报, 2009, 30(5): 673-678. He Shiyi, Michele L, Zhang Cheng,et al. A High Precision Underground Water Tracing Test Technique and Its Applications: A Case Study in Maocun Karst System, Guilin, Guangxi[J]. Acta Geoscient ia Sinica, 2009, 30(5): 673-678.[5] Zhao Min, Zeng Cheng, Liu Zaihua,et al. Effect of Different Land Use/Land Cover on Karst Hydro-geochemistry: A Paired Catchment Study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China[J]. Journal of Hydrology, 2010, 388: 121-130.[6] 曾成.湿亚热带岩溶系统水文水化学对土地利用的响应研究[D].北京:中国地质科学院.2009. Zeng Cheng. Study on the Response of Hydrology and Hydrochemistry of Karst Systems to Different Land Use Under Humid Subtropical Climate[D]. Beijing:Chinese Acadamy of Geological Sciences, 2009.[7] 杨力铮. 贵州普定后寨地下河岩溶水运动特征[J]. 中国岩溶, 1982,1(1):18-26. Yang Lizheng. Karst Water Movement in Houzhai Subterranean River, Puding, Guizhou Province[J].Carsologica Sinica, 1982,1(1):18-26.[8] 吴月霞,蒋勇军,袁道先,等. 岩溶泉域降雨径流水文过程的模拟:以重庆金佛山水房泉为例[J]. 水文地质工程地质, 2007(6): 41-48. Wu Yuexia, Jiang Yongjun, Yuan Daoxian et al. Simulation of Hydrological Response of Karst Spring to Precipitation:Case Study of Shuifang Spring, Jinfo Mt, Chongqing[J]. Hydrogeology and Engineering Geology, 2007(6): 41-48.[9] 杨平恒,罗鉴银,彭稳,等. 在线技术在岩溶地下河示踪试验中的应用[J]. 中国岩溶, 2008, 27(3): 215-220. Yang Pingheng, Luo Jianyin, Peng Wen, et al. Application of Online Technique in Tracer Test:A Case in Qingmuguan Subterranean River System, Chongqing, China[J]. Carsologica Sinica, 2008, 27(3): 215-220.[10] Guo F, Jiang G.Nitrogen Budget of a Typical Subterranean River in Peak Cluster Karst Area[J]. Environmental Geology, 2009, 58: 1741-1748.[11] 唐伟.外源水对碳酸盐岩溶蚀速率与碳汇效应的影响:以毛村地下河为例[D].重庆:西南大学,2011. Tang Wei. A Study on Allogenic Water for Carbonate Dissolution Rate and Karst Carbon Sink:An Example from Maocun Subterranean River of Guilin[D]. Chongqing:Southwest University, 2011.[12] 姜光辉,郭芳,曹建华,等.峰丛洼地表层岩溶动力系统季节变化规律[J].地球科学:中国地质大学学报, 2003, 28(3): 341-345. Jiang Guanghui, Guo Fang, Cao Jianhua, et al. Seasonal Change of Epikarst Dynamic System in Peak Depression Area[J]. Earth Science :Journal of China University of Geosciences, 2003, 28(3): 341-345.[13] Jiang G, Guo F, Wu J,et al. The Threshold Value of Epikarst Runoff in Forest Karst Mountain Area[J]. Environmental Geology,2008,55:87-93.[14] 黄芬,唐伟,汪进良,等.外源水对岩溶碳汇的影响[J].中国岩溶,2011,30(4):417-421. Huang Fen, Tang Wei, Wang Jinliang, et al. The Influence of Allogenic Water on Karst Carbon Sink[J]. Carsologica Sinica, 2011,30(4):417-421.[15] Williams P W. The Role of the Subcutaneous Zone in Karst Hydrology[J]. Journal of Hydrology, 1983, 61: 45-67.[16] Birk S, Liedl R, Sauter M. Identification of Localized Recharge and Conduit Flow by Conbined Analysis of Hydraulic and Physico-Chemical Spring Responses (Urenbrunnen, SW-Germany)[J]. Journal of Hydrology, 2004, 286:179-193.[17] Liu Z H, Li Q, Sun, H L, et al. Seasonal Diurnal and Storm-Scale Hydrochemcial Variations of Typical Epikarst Springs in Subtropical Karst Area of SW China: Soil CO2 and Dilution Effects[J]. Journal of Hydrology,2007, 337: 207-223.[18] 袁道先,戴爱德,蔡五田,等.中国南方裸露型岩溶峰丛山区岩溶水系统及其数学模型的研究:以桂林丫吉村为例[M].桂林:广西师范大学出版社,1996. Yuan Daoxian, Dai Aide, Cai Wutian, et al. Karst Water System of a Peak Cluster Catchment in South China's Bare Karst Region and Its Mathematic Model[M]. Guilin:Guangxi Normal University Publishing House, 1996.[19] 章程,蒋忠诚,何师意,等. 垂直气候带岩溶动力系统特征研究:以重庆金佛山国家级自然保护区为例[J]. 地球学报,2006, 27(5): 510-514. Zhang Cheng, Jiang Zhongcheng, He Shiyi,et al. The Karst Dynamic System of Vertical Zoned Climate Region:A Case Study of the Jinfo Mountain State Nature Reserve in Chongqing[J]. Acta Geoscientica Sinica, 2006, 27(5): 510-514.[20] 扈志勇,杨平恒,杨梅,等.川东槽谷区岩溶泉水物理化学动态特征及其环境效应研究:以重庆青木关岩溶槽谷姜家泉为例[J]. 现代地质, 2009, 23(6): 1167-1173. Hu Zhiyong, Yang Pingheng, Yang Mei,et al. Hydro-Physico-Chemical Variations of the Karstic Spring and Its Environmental Effects in Ridge-Trough Area, Eastern Sichuan:A Case Study on Jiangjia Spring in Qingmuguan KarstValley, Chongqing[J]. Geoscience, 2009, 23(6): 1167-1173.[21] 汪进良.桂林毛村地下河出口电导率和NO3-动态变化研究[D].北京:中国地质科学院,2005. Wang Jinliang. Variation of Specific Conductivity and Nitrate in Maocun Subterranean River in Guilin[D]. Beijing:Chinese Acadamy of Geological Sciences, 2005.[22] 刘再华,Groves Chris, 袁道先,等. 水-岩-气相互作用引起的水化学动态变化研究:以桂林岩溶试验场为例[J].水文地质工程地质,2003(4):13-18. Liu Zaihua, Groves Chris, Yuan Daoxian, et al. Study on the Hydrochemical Variations Caused by Water-Rock-Gas Interaction:An Example from Guilin Karst Experimental Site[J]. Hydrogeology and Engineering Geology, 2003(4): 13-18.[23] 康志强,何师意,罗允义.表层岩溶系统水化学成因及植被恢复条件下变化趋势:以广西马山弄拉兰电堂泉为例[J].吉林大学学报:地球科学版, 2015, 45(1): 232-239. Kang Zhiqiang, He Shiyi, Luo yunyi. Cause and Change Trend of Water Chemistry of Epikarst System Under the Vegetation Restoration: A Case of Landiantang Epikarst Spring, Nongla, Mashan,Guangxi[J]. Journal of Jinlin University: Earth Science Edition, 2015, 45(1): 232-239. |
[1] | 赵良杰, 夏日元, 易连兴, 杨杨, 王喆, 卢海平. 基于流量衰减曲线的岩溶含水层水文地质参数推求方法[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1817-1821. |
[2] | 董贵明, 束龙仓, 田娟, 季叶飞. 西南岩溶地下河系统水流运动数值模型[J]. J4, 2011, 41(4): 1136-1143. |
[3] | 温忠辉, 任化准, 束龙仓, 王恩, 柯婷婷, 陈荣波. 岩溶地下河日流量预测的小样本非线性时间序列模型[J]. J4, 2011, 41(2): 455-458. |
|