吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (4): 1198-1204.doi: 10.13278/j.cnki.jjuese.201504206

• 地质工程与环境工程 • 上一篇    下一篇

离心操作对BIOLOG法测定微生物群落功能多样性的影响

李玉梅1,2, 罗明奇1,2, 潘国勇1,2, 陶千冶1,2   

  1. 1. 中国科学院计算地球动力学重点实验室, 北京 100049;
    2. 中国科学院大学地球科学学院, 北京 100049
  • 收稿日期:2014-10-28 发布日期:2015-07-26
  • 作者简介:李玉梅(1974),女,副教授,主要从事地球化学、地球生物学和第四纪地质学方面的研究,E-mail:liym@ucas.ac.cn.
  • 基金资助:

    中国科学院战略性先导科技专项项目(XDA05130402);国家自然科学基金项目(41272207,40772112);中国科学院知识创新工程重要方向项目(KZCX2-EW-QN601)

Centrifugation Effect on the Functional Diversity of Microbial Community in Fallen Leaves Displaying in BIOLOG Micro-Plates

Li Yumei1,2, Luo Mingqi1,2, Pan Guoyong1,2, Tao Qianye1,2   

  1. 1. Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049, China;
    2. College of Earth Science, University of Chinese Academy Sciences, Beijing 100049, China
  • Received:2014-10-28 Published:2015-07-26

摘要:

陆地生态系统的有机质分解是地球系统碳循环的重要环节,但目前人们对这一过程的认知程度尚待提高,原因之一是对植物凋落物分解时微生物群落功能多样性的变化缺乏系统认识.如能将BIOLOG微平板法引入植物凋落物降解初期的研究中,将弥补这一重要环节的缺失.但当前对如何在降解初期研究中应用这一方法、尤其是对于在预处理过程中是否应进行离心操作并无定论.为此,笔者选用北京桦树林区凋落物的淋洗液为接种液,考察离心操作对BIOLOG微平板法测定结果的影响.研究发现:离心操作能减小培养液的浊度(吸光度减小0.13)、降低溶液颜色对微孔显色程度的干扰,但也会导致测得的微生物群落数量减少(平均颜色变化率可降低约0.4);样品中微生物群落数量越小,群落功能多样性受影响的程度则越大.因此,在选择是否进行离心操作时,需针对具体的研究对象综合选择.

关键词: BIOLOG, 离心, 凋落物, 微生物群落, 功能多样性

Abstract:

The decomposition of organic matter in terrestrial ecosystem is an important link in the global carbon cycle; however, and the knowledge of this process are still not sufficient. One of the reasons is the lack of a systematical recognition to the changes of microbial community functional diversity during a decomposition of plant litter. Things will get better if the method of BIOLOG micro-plates can be introduced into the initial degradation process of plant litter. Unfortunately, there was no conclusion on how to use this method to the initial degradation, and whether a centrifugal operation should be used during the process of pretreatment. We choose the eluting solution of Beijing birch forest litter as inoculums and consider the effects of centrifugal operation on the BIOLOG micro-plates. The results show that centrifugation can reduce the turbidity (absorbance decreases 0.13) and the interference of color to the solution. At the same time, centrifugation could reduce the measured quantity of microbial communities (AWCD value can be reduced by 0.4). The less the quantity of microbial communities in the sample is, the greater the impact on the functional diversity of soil microbial communities is. Therefore, a specific study target should be the judging basis to determine whether a centrifugation is used for its pretreatment.

Key words: BIOLOG, centrifugation, leaf litter, microbial community, functional diversity

中图分类号: 

  • S718.43

[1] Garland J L, Mills A L. Classification and Characte-rization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Tilization[J]. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359.

[2] 吴才武, 赵兰坡. 土壤微生物多样性的研究方法[J]. 中国农学通报, 2011, 27(11): 231-235. Wu Caiwu, Zhao Lanpo.Technologies on Soil Microbiology Diversity[J]. Chinese Agricultural Science Bulletin, 2011, 27(11): 231-235.

[3] 苏小四, 孟祥菲, 张文静, 等. 人工回灌过程中地下水微生物群落变化[J]. 吉林大学学报:地球科学版, 2015, 45(2): 573-583. Su Xiaosi, Meng Xiangfei, Zhang Wenjing, et al. Change of the Groundwater Microbial Community During Artificial Recharge Process[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(2): 573-583.

[4] Li S H, Liu K X, Liao Z W. Method for Simplification of Characteristic Carbon Sources for Biolog Analysis of Soil Microbial Community and Its Application[J]. Scientia Agricultura Sinica, 2010, 43(3): 523-528.

[5] Myers R T, Zak D R, White D C, et al. Landscape-Level Patterns of Microbial Community Composition and Substrate Use in Upland Forest Ecosystems[J]. Soil Science Society of America Journal, 2001, 65(2): 359-367.

[6] Garland J L. Analytical Approaches to the Characterization of Samples of Microbial Communities Using Patterns of Potential C Source Utilization[J]. Soil Biology and Biochemistry, 1996, 28(2): 213-221.

[7] Garland J L. Analysis and Interpretation of Community-Level Physiological Profiles in Microbial Ecology[J]. FEMS Microbiology Ecology, 1997, 24(4): 289-300.

[8] De Fede K L, Panaccione D G, Sexstone A J. Characterization of Dilution Enrichment Cultures Obtained from Size-Fractionated Soil Bacteria by BIOLOGTM Community-Level Physiological Profiles and Restriction Analysis of 16Sr RNA Genes[J]. Soil Biology and Biochemistry, 2001, 33(11): 1555-1562.

[9] De Fede K L, Sexstone A J. Differential Response of Size-Fractionated Soil Bacteria in BIOLOG® Microtitre Plates[J]. Soil Biology and Biochemistry, 2001, 33(11): 1547-1554.

[10] 金剑, 王光华, 陈雪丽, 等. Biolog-ECO解析不同大豆基因型R1期根际微生物群落功能多样性特征[J]. 大豆科学, 2007, 26(4): 565-570. Jin Jian, Wang Guanghua, Chen Xueli, et al. Analysis of Microbial Community Functional Diversity in Rhizosphere of Different Soybean Genotypes R1 Stage Using Biolog-ECO Method[J]. Soybean Science,2007, 26(4): 565-570.

[11] Zak J C, Willig M R, Moorhead D L, et al. Functional Diversity of Microbial Communities: A Quantitative Approach[J]. Soil Biology and Biochemistry, 1994, 26(9): 1101-1108.

[12] Schutter M E, Sandeno J M, Dick R P. Seasonal, Soil Type, and Alternative Management Influences on Microbial Communities of Vegetable Cropping Systems[J]. Biology and Fertility of Soils, 2001, 34(6): 397-410.

[13] 郑丽萍, 龙涛, 林玉锁, 等. Biolog-ECO解析有机氯农药污染场地土壤微生物群落功能多样性特征[J]. 应用与环境生物学报, 2013, 19(5): 759-765. Zheng Liping, Long Tao, Lin Yusuo, et al. Biolog-ECO Analysis of Microbial Community Functional Diversity in Organochlorine Contaminated Soil[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(5): 759-765.

[14] 郑华, 欧阳志云, 王效科, 等. 不同森林恢复类型对土壤微生物群落的影响[J]. 应用生态学报,2004,15(11): 2019-2024. Zheng Hua, Ouyang Zhiyun, Wang Xiaoke, et al. Effects of Forest Restoration Patterns on Soil Microbial Communities[J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2019-2024.

[15] 董立国, 蒋齐, 蔡进军, 等. 基于Biolog-ECO技术不同退耕年限苜蓿地土壤微生物功能多样性分析[J]. 干旱区研究, 2011, 28(4): 630-637. Dong Liguo, Jiang Qi, Cai Jinjun, et al. Anaysis on Functional Diversity of Edaphon Communities in Medicago Sativa Fields of Different Growth Years Based on Biolog-ECO Plates[J]. Arid Zone Research, 2011, 28(4): 630-637.

[16] 岳冰冰, 李鑫, 张会慧, 等. 连作对黑龙江烤烟土壤微生物功能多样性的影响[J]. 土壤, 2013, 45(1): 116-119. Yue Bingbing, Li Xin, Zhang Huihui, et al. Soil Microbial Diversity and Community Structure Under Continuous Tobacco Cropping[J]. Soil, 2013, 45(1): 116-119.

[17] Williams M A, Rice C W. Seven Years of Enhanced Water Availability Influences the Physiological, Structural, and Functional Attributes of a Soil Microbial Community[J]. Applied Soil Ecology, 2007, 35(3): 535-545.

[18] Kersters I,Van Vooren L,Verschuere L,et al.Utility of the Biolog System for the Characterization of Heterotrophic Microbial Communities[J]. Systematic and Applied Microbiology, 1997, 20(3): 439-447.

[19] Choi K H, Dobbs F C. Comparison of Two Kinds of Biolog Microplates (GN and ECO) in Their Ability to Distinguish Among Aquatic Microbial Communities[J]. Journal of Microbiological Methods, 1999, 36(3): 203-213.

[20] Guckert J B, Carr G J, Johnson T D, et al. Community Analysis by Biolog: Curve Integration for Statistical Analysis of Activated Sludge Microbial Habitats[J]. Journal of Microbiological Methods, 1996, 27(2): 183-197.

[21] Kaiser S K, Guckert J B, Gledhill D W. Comparison of Activated Sludge Microbial Communities Using BiologTM Microplates[J]. Water Science and Technology, 1998, 37(4): 57-63.

[22] Garland J L, Mills A L, Young J S. Relative Effectiveness of Kinetic Analysis vs Single Point Readings for Classifying Environmental Samples Based on Community-Level Physiological Profiles (CLPP)[J]. Soil Biology and Biochemistry, 2001, 33(7): 1059-1066.

[23] Engelen B, Meinken K, Von Wintzingerode F, et al. Monitoring Impact of a Pesticide Treatment on Bacterial Soil Communities by Metabolic and Genetic Fingerprinting in Addition to Conventional Testing Procedures[J]. Applied and Environmental Microbiology, 1998, 64(8): 2814-2821.

[24] Franklin R B, Garland J L, Bolster C H, et al. Impact of Dilution on Microbial Community Structure and Functional Potential: Comparison of Numerical Simulations and Batch Culture Experiments[J]. Applied and Environmental Microbiology, 2001, 67(2): 702-712.

[25] Gomez E, Garland J, Conti M. Reproducibility in the Response of Soil Bacterial Community-Level Physiological Profiles from a Land Use Intensification Gradient[J]. Applied Soil Ecology, 2004, 26(1): 21-30.

[26] Calbrix R, Laval K, Barray S. Analysis of the Potential Functional Diversity of the Bacterial Community in Soil: A Reproducible Procedure Using Sole-Carbon-Source Utilization Profiles[J]. European Journal of Soil Biology, 2005, 41(1): 11-20.

[27] 郑华, 欧阳志云, 方治国, 等. BIOLOG在土壤微生物群落功能多样性研究中的应用[J]. 土壤学报, 2004, 41(3): 456-461. Zheng Hua, Ouyang Zhiyun, Fang Zhiguo, et al. Application of Biolog to Study on Soil Microbial Community Functional Diversity[J]. Acta Pedologica Sinica, 2004, 41(3): 456-461.

[28] Preston-Mafham J, Boddy L, Randerson P F. Analysis of Microbial Community Functional Diversity Using Sole-Carbon-Source Utilisation Profiles:A Critique[J]. FEMS Microbiology Ecology, 2002, 42(1): 1-14.

[29] Warcup J. The Soil-Plate Method for Isolation of Fungi from Soil[J]. Nature, 1950, 166: 117-118.

[30] Warcup J. Isolation of Fungi from Hyphae Present in Soil[J]. Nature, 1955, 175: 953-954.

[31] Verschuere L, Fievez V, Van Vooren L, et al. The Contribution of Individual Populations to the Biolog Pattern of Model Microbial Communities[J]. FEMS Microbiology Ecology, 1997, 24(4): 353-362.

[32] 郑华, 欧阳志云, 赵同谦, 等. 不同森林恢复类型对土壤生物学特性的影响[J]. 应用与环境生物学报, 2006, 12(1): 36-43. Zheng Hua, Ouyang Zhiyun, Zhao Tongqian, et al. Effect of Different Forest Restoration Approaches on Soil Biological Properties[J]. Chinese Journal of Applied and Environmental Biology, 2006, 12(1): 36-43.

[33] Classen A T, Boyle S I, Haskins K E, et al. Community-Level Physiological Profiles of Bacteria and Fungi: Plate Type and Incubation Temperature Influences on Contrasting Soils[J]. FEMS Microbiology Ecology, 2003, 44(3): 319-328.

[34] 杨永华, 姚键, 华晓梅. 农药污染对土壤微生物群落功能多样性的影响[J]. 微生物学杂志, 2000, 20(2): 23-25. Yang Yonghua, Yao Jian, Hua Xiaomei. Effect of Pesticide Pollution Against Functional Microbial Diversity in Soil[J]. Journal of Microbiology, 2000, 20(2): 23-25.

[35] 张万儒, 许本彤, 杨承栋, 等. 山地森林土壤枯枝落叶层结构和功能研究[J]. 土壤学报, 1990, 27(2): 121-131. Zhang Wanru, Xu Bentong, Yang Chengdong, et al. Studies on Structure and Function of Forest Floors of Mountain Forest Soils[J]. Acta Pedologica Sinica, 1990, 27(2): 121-131.

[36] 莫江明, 布朗, 孔国辉, 等. 鼎湖山生物圈保护区马尾松林凋落物的分解及其营养动态研究[J]. 植物生态学报, 1996,20(6): 534-542. Mo Jiangming, Bu Lang, Kong Guohui, et al. Litter Decomposition and Its Nutrient Dynamics of a Pine Forest in Dinghushan Biosphere Reserve[J]. Acta Phytoecologica Sinica, 1996,20(6): 534-542.

[37] Ribeiro C, Madeira M, Araújo M C. Decomposition and Nutrient Release from Leaf Litter of Eucalyptus Globulus Grown Under Different Water and Nutrient Regimes[J]. Forest Ecology and Management, 2002, 171(1): 31-41.

[38] Moretto A S, Distel R A. Decomposition of and Nutrient Dynamics in Leaf Litter and Roots of Poa Pigularis and Stipa Gyneriodes[J]. Journal of Arid Environments, 2003, 55(3): 503-514.

[1] 苏小四, 孟祥菲, 张文静, 石旭飞, 何海洋. 人工回灌过程中地下水微生物群落变化[J]. 吉林大学学报(地球科学版), 2015, 45(2): 573-583.
[2] 马会强, 张兰英, 李爽, 刘鹏, 邓海静. 柴油污染地下水修复生物反应墙中功能微生物数量及群落多样性[J]. J4, 2011, 41(3): 819-825.
[3] 刘鹏, 张兰英, 刘莹莹, 刘娜, 刘峰, 刘虹, 崔哲, 许国欣. 组合生物技术处理制药废水及其生物相[J]. J4, 2010, 40(1): 169-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!