吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 945-967.doi: 10.13278/j.cnki.jjuese.201604101

• 地质与资源 •    下一篇

全球早古生代造山带(Ⅰ):碰撞型造山

李三忠1,2,3, 杨朝1,2, 赵淑娟1,2, 李玺瑶1,2, 郭玲莉1,2, 余珊1,2, 刘鑫1,2, 索艳慧1,2, 兰浩圆1,2   

  1. 1. 中国海洋大学海洋地球科学学院, 山东 青岛 266100;
    2. 海底科学与探测技术教育部重点实验室, 山东 青岛 266100;
    3. 青岛海洋科学与技术国家实验室海洋地质功能实验室, 山东 青岛 266100
  • 收稿日期:2016-03-16 出版日期:2016-07-26 发布日期:2016-07-26
  • 作者简介:李三忠(1968),男,教授,博士,博士生导师,杰青,主要从事构造地质学及海洋地质学的教学和研究工作,E-mail:sanzhong@ouc.edu.cn
  • 基金资助:

    国家自然科学基金重大项目(41190072,41190070,U1606401);国家杰出青年基金项目(41325009);泰山学者特聘教授项目;鳌山卓越科学家计划项目

Global Early Paleozoic Orogens (Ⅰ): Collision-Type Orogeny

Li Sanzhong1,2,3, Yang Zhao1,2, Zhao Shujuan1,2, Li Xiyao1,2, Guo Lingli1,2, Yu Shan1,2, Liu Xin1,2, Suo Yanhui1,2, Lan Haoyuan1,2   

  1. 1. College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China;
    2. Key Lab of Submarine Geosciences and Prospecting Technique, Ministry of Education, Qingdao 266100, Shandong, China;
    3. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, Shandong, China
  • Received:2016-03-16 Online:2016-07-26 Published:2016-07-26
  • Supported by:

    Supported by Key Project of NSFC (Grants 41190072, 41190070, U1606401); NSFC for Distinguished Young Scientists (41325009); Taishan Scholor Program and Aoshan Elite Scientist Plan to Prof. Sanzhong Li

摘要:

自新元古代罗迪尼亚超大陆裂解以来,早古生代是板块构造运动活跃时期,具有板块运动速度较快、构造格局不稳定、块体之间相互作用复杂多变等特征,造山带演化极其复杂,导致全球早古生代古大陆重建现今仍较模糊。特别是,早古生代末450~400 Ma存在全球性准同时的造山运动,已经出现俯冲增生、碰撞、陆内3种类型的全球尺度造山带。本文侧重论述全球早古生代碰撞类型造山带的特征,总结典型碰撞造山带最新的年代学、变质、变形和岩浆作用特征及其时空分布。早古生代全球碰撞型造山带主要分布在南半球的泛非造山带和北半球的加里东期造山带,分别与南方冈瓦纳大陆和北方劳俄古陆的初步集结密切相关,早古生代碰撞造山主要体现在大陆块之间的碰撞作用为特征。这些早古生代碰撞造山带具有近似的碰撞年龄,大致相同的演化过程。其中,南方大陆主体碰撞完成于540 Ma,而北方大陆主体集结完成于420 Ma,从全球构造意义上可能意味着全球一个420~400 Ma的超大陆初步形成。

关键词: 早古生代, 碰撞造山, 加里东运动, 泛非运动, 冈瓦纳大陆, 劳俄大陆

Abstract:

Since the Neoproterozoic rifting of the supercontinent Rodina, Early Paleozoic entered an active period of plate tectonics. Because plate movement speed became faster, the plate configurations are variable and instabile, the interactions among blocks are complex and changeable. the evolution of orogenic belts are also extremely complex, resulting in that global Early Paleozoic paleo-continent reconstruction today are still ambiguous. In particular, there is a global quasi-simultaneous orogeny at the end of the Early Paleozoic (450-400 Ma), there are three types of global-scale orogenic belts, which are subduction-related acretionary, collisional and intracontinental. This paper focuses on Early Paleozoic collision-type orogenic belts in the globe. It is discussed and summarized for the new geochronological and metamorphic, deformation and magmatism and their temporal and spatial distribution of the typical collisional orogenic belts. Early Paleozoic global collision-type orogenic belts mainly include the Pan-African orogenic belts of the southern hemisphere and the Caledonian orogenic belts of the northern hemisphere, respectively. They are closely related with preliminary assemblies of the Southern Gondwana and the Northern Laurussia. The Early Paleozoic collisional orogeny is mainly characterized by the collisions between large-scale continental blocks. These Early Paleozoic collisional orogenic belts have an approximate collision age, roughly undergoing the same evolutionary process, which the main part of the continent-continent collision for the southern continents completed in 540 Ma, and the main part of the northern continents assembled in 420 Ma. In the global tectonic significance it may means the initial formation of a global supercontinent of 420-400 Ma.

Key words: Early Paleozoic, collisional orogeny, Caledonian orogeny, Pan-African orogeny, Gondwanaland, Laurussian continent

中图分类号: 

  • P542.2

[1] 李江海, 李维波, 王洪浩, 等. 晚古生代泛大陆聚合的全球构造背景: 板块漩涡运动轨迹含义的探讨[J]. 地质学报, 2014, 88(6): 980-991. Li Jianghai, Li Weibo, Wang Honghao, et al. Global Tectonic Setting During the Late Paleozoic Convergence of Pangea: Discussion of Plate Vortex Trajectory[J]. Acta Geologica Sinica, 2014, 88(6): 980-991.

[2] Zhao G C, Cawood P A, Simon A W, et al. Review of Global 2.1-1.8 Ga Orogen: Implications for a Pre-Rodinia Supercontinent[J]. Earth-Science Reviews, 2002, 59(1/2/3/4): 125-162.

[3] Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup[J]. Earth-Science Reviews, 2004, 67(1): 91-123.

[4] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, Configuration, and Break-up History of Rodinia:A Synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.

[5] Shu L, Wang B, Cawood P A, et al. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China[J]. Tectonics, 2015, 34(8): 1600-1621.

[6] Wang Y, Zhang F, Fan W, et al. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology[J]. Tectonics, 2010, 29(6): 1-70.

[7] Johnston S M, Hartz E H, Brueckner H K, et al. U-Pb Zircon Geochronology and Tectonostratigraphy of Southern Liverpool Land, East Greenland: Implications for Deformation in the Overriding Plates of Continental Collisions[J]. Earth & Planetary Science Letters, 2010, 297(3/4): 512-524.

[8] Hannes K, Bruecknera J A, Gilottia A P. Caledonian Eclogite-Facies Metamorphism of Early Proterozoic Protoliths from the North-East Greenland Eclogite Province[J]. Contrib Mineral Petrol, 1998, 130: 103-120.

[9] Kalsbeek F, Jepsen H F, Nutman A P. From Source Migmatites to Plutons: Tracking the Origin of ca. 435 Ma S-Type Granites in the East Greenland Caledonian Orogen[J]. Lithos, 2001, 57(1): 1-21.

[10] Augland L E, Andresen A, Corfu F. Late Ordovician to Silurian Ensialic Magmatism in Liverpool Land, East Greenland: New Evidence Extending the Northeastern Branch of the Continental Laurentian Magmatic Arc[J]. Geological Magazine, 2012, 149(4): 561-577.

[11] Keller G R, Hatcher R D. Some Comparisons of the Structure and Evolution of the Southern Appalachian-Ouachita Orogen and Portions of the Trans-European Suture Zone Region[J]. Tectonophysics, 1999, 314(1): 43-68.

[12] Soper N J, Strachan R A, Holdsworth R E, et al. Sinistral Transpression and the Silurian Closure of Iapetus[J]. Journal of the Geological Society, 1992, 149(6): 871-880.

[13] Dewey J F, Strachan R A. Changing Silurian-Devonian Relative Plate Motion in the Caledonides: Sinistral Transpression to Sinistral Transtension[J]. Journal of the Geological Society, 2003, 160(2): 219-229.

[14] Hull J M, Friderichsen J D, Gilotti J A.Gneiss Complex of the Skerfjorden Mregion Hypothesis, Environmental Speculation[J]. GSA Bulletin, 1997, 109(1): 16-42.

[15] Thrane K. Relationships Between Archaean and Pa-laeoproterozoic Crystalline Basement Complexes in the Southern Part of the East Greenland Caledonides: An Ion Microprobe Study[J]. Precambrian Research, 2002, 113(1): 19-42.

[16] Kalsbeek F. Geochemistry, Tectonic Setting, and Poly-Orogenic History of Palaeoproterozoic Basement Rocks from the Caledonian Fold Belt of North-East Greenland[J]. Precambrian Research, 1995, 72(3/4): 301-315.

[17] Caby R, Bertrand-Sarfati J. The Eleonore Bay Group(Central East Greenland)[M]//Later Proterozoic Stratigraphy of the Northern Atlantic Regions. New York: Springer, 1988: 212-236.

[18] Larsen L M, Watt W S, Watt M. Geology and Petrology of the Lower Tertiary Plateau Basalts of the Scoresby Sund Region, East Greenland[R]. Greenland: Geological Survey of Greenland, 1989:157-164.

[19] Dhuime B, Bosch D, Bruguier O, et al. Age, Provenance and Post-Deposition Metamorphic Overprint of Detrital Zircons from the Nathorst Land Group (NE Greenland): A LA-ICP-MS and SIMS Study[J]. Precambrian Research, 2007, 155(1): 24-46.

[20] White A, Hodges K, Martin M. Geologic Constraints on Middle-Crustal Behavior During Broadly Synorogenic Extension in the Central East Greenland Caledonides[J]. International Journal of Earth Sciences, 2002, 91(2): 187-208.

[21] Friderichsen J D, Holdsworth R E, Jepsen H F, et al. Caledonian and Pre-Caledonian Geology of Dronning Louise Land, North-East Greenland[J]. Rapport Grønlands Geologiske Undersøgelse, 1990, 148: 133-141.

[22] Braun A, Kim H R, Csatho B, et al. Gravity-Inferred Crustal Thickness of Greenland[J]. Earth & Planetary Science Letters, 2007, 262(1/2): 138-158.

[23] Stephens M B, Gee D G. A Tectonic Model for the Evolution of the Eugeoclinal Terranes in the Central Scandinavian Caledonides[C]//The Caledonide Orogen: Scandinavia and Related Areas. Wiley: Chichester, 1985: 953-978.

[24] Roberts D.The Scandinavian Caledonides:Event Chro-nology, Palaeogeographic Settings and Likely Modern Analogues[J]. Tectonophysics, 2003, 365(1/2/3/4): 283-299.

[25] Roberts D, Melezhik V A, Heldal T. Carbonate Formations and Early NW-Directed Thrusting in the Highest Allochthons of the Norwegian Caledonides: Evidence of Laurentian Ancestry[J]. Journal of the Geological Society, 2002, 159(2): 117-120.

[26] Hacker B R, Gans P B. Continental Collisions and the Creation of Ultrahigh-Pressure Terranes: Petrology and Thermochronology of Nappes in the Central Scandinavian Caledonides[J]. Geological Society of America Bulletin, 2005, 117(1/2): 117-134.

[27] Bingen B, Belousova E A, Griffin W L. Neoproterozoic Recycling of the Sveconorwegian Orogenic Belt: Detrital-Zircon Data from the Sparagmite Basins in the Scandinavian Caledonides[J]. Precambrian Research, 2011, 189(3): 347-367.

[28] Lundmark A M, Corfu F. Emplacement of a Silurian Granitic Dyke Swarm During Nappe Translation in the Scandinavian Caledonides[J]. Journal of Structural Geology, 2008, 30(7): 918-928.

[29] Fossen H, Dunlap W J. Timing and Kinematics of Caledonian Thrusting and Extensional Collapse, Southern Norway: Evidence from 40Ar/39Ar Thermochronology[J]. Journal of Structural Geology, 1998, 20(6): 765-781.

[30] Bruton D L, Harper D A T. Brachiopods Andtrilobites of the Early Ordovician Serpentinite Otta Conglomerate, South Central Norway[J]. Norsk Geologisk Tidsskrift, 1981, 61: 3-18.

[31] Sturt B A, Roberts D. Tectonostratigraphic Relationships and Obduction Histories of Scandinavian Ophiolitic Terranes[M]//Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Amsterdam: Springer, 1991: 745-769.

[32] Tegner C, Wilson J R, Robins B. Crustal Assimilation in Basalt and Jotunite: Constraints from Layered Intrusions[J]. Lithos, 2005, 83(11): 299-316.

[33] Brueckner H K, Roermund H L M V. Concurrent HP Metamorphism on both Margins of Iapetus: Ordovician Ages for Eclogites and Garnet Peridotites from the Seve Nappe Complex, Swedish Caledonides[J]. Journal of the Geological Society, 2007, 164(1): 117-128.

[34] Dallmeyer R D, Gee D G. 40Ar/39Ar Mineral Dates from Retrogressed Eclogites Within the Baltoscandian Miogeocline: Implications for a Polyphase Caledonian Orogenic Evolution[J]. Geological Society of America Bulletin, 1986, 87: 26-34.

[35] Janák M, Roermund H V, Majka J, et al. UHP Metamorphism Recorded by Kyanite-Bearing Eclogite in the Seve Nappe Complex of Northern Jämtland, Swedish Caledonides[J]. Gondwana Research, 2013, 23(3): 865-879.

[36] Kylander-Clark, Andrew R C, Hacker B R, et al. Slow Subduction of a Thick Ultrahigh-Pressure Terrane[J]. Tectonics, 2009, 28(2): 1779-1794.

[37] Boundy T M, Mezger K, Essene E J. Temporal and Tectonic Evolution of the Granulite-Eclogite Association from the Bergen Arcs, Western Norway[J]. Lithos, 1997, 39( 3/4): 159-178.

[38] Andréasson P G. The Baltoscandian Margin in Neoproterozoic-Early Palaeozoic Times. Some Constraints on Terrane Derivation and Accretion in the Arctic Scandinavian Caledonides[J]. Tectonophysics, 1994, 231(1/2/3): 1-32.

[39] Grenne T, Ihlen P M, Vokes F M. Scandinavian Caledonide Metallogeny in a Plate Tectonic Perspective[J]. Mineralium Deposita, 1999, 34(5): 422-471.

[40] Slagstad T, Pin C, Roberts D, et al. Tectonomagmatic Evolution of the Early Ordovician Suprasubduction-Zone Ophiolites of the Trondheim Region, Mid-Norwegian Caledonides[J]. Geological Society London Special Publications, 2014, 390(1): 541-561.

[41] Eide E A, Lardeaux J M. A Relict Blueschist in Meta-Ophiolite from the Central Norwegian Caledonides-Discovery and Consequences[J]. Lithos, 2002, 60(1): 1-19.

[42] Walsh E O, Hacker B R, Gans P B, et al. Crustal Exhumation of the Western Gneiss Region UHP Terrane, Norway: 40Ar/39Ar Thermochronology and Fault-Slip Analysis[J]. Tectonophysics, 2013, 608: 115-1179.

[43] Breivik A J, Mjelde R, Grogan P, et al. Caledonide Development Offshore-Onshore Svalbard Based on Ocean Bottom Seismometer, Conventional Seismic, and Potential Field Data[J]. Tectonophysics, 2005, 401(1): 79-117.

[44] Johansson A, Gee D G, Larionov A N, et al. Grenvillian and Caledonian Evolution of Eastern Svalbard a Tale of Two Orogenies[J]. Terra Nova, 2005, 17(4):317-325.

[45] Ohta Y. Caledonian and Precambrian History in Svalbard: A Review, and an Implication of Escape Tectonics[J]. Tectonophysics, 1994, 231(1/2/3): 183-194.

[46] Stephens M B.斯堪的那维亚和Svalbard地区加里东造山带中的地体及其增生历史评述[J]. 世界地质, 1991,10 (1):91-92. Stephens M B. Terranes in Caledonides and Their Accretion History in Scandinavia and Svalbard Regions[J]. World Geology, 1991,10 (1):91-92.

[47] Bernard G J, Peucat J J, Ohta Y. Age and Nature of Protoliths in the Caledonian Blueschist-Eclogite Complex of Western Spitsbergen: A Combined Approach Using U Pb, Sm Nd and REE Whole-Rock Systems[J]. Lithos, 1993, 30(1): 81-90.

[48] Griffiths J B, Peucat J J, Ohta Y. Age and Nature of Protoliths in the Caledonian Blueschist-Eclogite Complex of Western Spitsbergen: A Combined Approach Using U Pb, Sm Nd and REE Whole-Rock Systems[J]. Lithos, 1993, 30 (1): 81-90.

[49] Trettin H P. The Arctic Islands[C]//Bally A W, Palmer A R. The Geology of North America.Boulder:An Overview the Geological Society of America,1989:349-370.

[50] Dallmeyer R D, Reuter A.40Ar/39Ar Whole-Rock Dating and the Age of Cleavage in the Finnmark Autochthon, Northernmost Scandinavian Caledonides[J]. Lithos, 1989, 22(3): 213-222.

[51] Dallmeyer R D, Lecorche J P.40Ar/39Ar Polyorogenic Mineral Age Record in the Northern Mauritanide Orogen, West Africa[J]. Tectonophysics, 1990, 177(1): 81-107.

[52] Ko?mińska K, Majka J, Mazur S, et al. Blueschist Facies Metamorphism in Nordenskiöld Land of West-Central Svalbard[J]. Terra Nova, 2014, 26(5): 377-386.

[53] Michalski K, Lewandowski M, Manby G. New Palaeomagnetic, Petrographic and 40Ar/39Ar Data to Test Palaeogeographic Reconstructions of Caledonide Svalbard[J]. Geological Magazine, 2012, 149(4): 696-721.

[54] Labrousse L, Elvevold S, Lepvrier C, et al. Structural Analysis of High-Pressure Metamorphic Rocks of Svalbard: Reconstructing the Early Stages of the Caledonian Orogeny[J]. Tectonics, 2008, 27(5): 269-283.

[55] McKerrow W S, Niocaill C M, Dewey J F. The Caledonian Orogeny Redefined[J]. Journal of the Geological Society, 2000, 157: 1149-1154.

[56] Atherton M P, Ghani A A. Slab Breakoff: A Model for Caledonian, Late Granite Syn-Collisional Magmatism in the Orthotectonic (Metamorphic) Zone of Scotland and Donegal, Ireland[J]. Lithos, 2002, 62(3): 65-85.

[57] Oliver G J H, Wilde S A, Wan Y. Geochronology and Geodynamics of Scottish Granitoids from the Late Neoproterozoic Break-Up of Rodinia to Palaeozoic Collision[J]. Journal of the Geological Society, 2008, 165(3): 661-674.

[58] Hollis S P, Cooper M R, Roberts S, et al. Stratigraphic, Geochemical and U-Pb Zircon Constraints from Slieve Gallion, Northern Ireland: A Correlation of the Irish Caledonian Arcs[J]. Journal of the Geological Society, 2013, 170(5): 737-752.

[59] Soper N J. The Newer Granite Problem: A Geotectonic View[J]. Geological Magazine, 1986, 123(3):227-236.

[60] Read H H. Aspects of Caledonian Magmatism in Britain[J]. Geological Journal, 1961, 2(4): 653-683.

[61] Oliver G J H. Reconstruction of the Grampian Episode in Scotland: Its Place in the Caledonian Orogeny[J]. Tectonophysics, 2001, 332(Sup.1/2): 23-49.

[62] Golonka J, Gaw?da A. Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic[M]//Sharkov, Evgenii. Tectonics-Recent Advances. Vienna: Intech Press, 2012: 261-282.

[63] Pharaoh T C. Palaeozoic Terranes and Their Lithospheric Boundaries Within the Trans-European Suture Zone (TESZ): A Review[J]. Tectonophysics, 1999, 314( 1/2/3): 17-41.

[64] Berthelsen A. The Tornquist Zone Northwest of the Carpathians: An Intraplate Pseudosuture[J]. Gff, 1998, 120(2): 223-230.

[65] Torsvik T H, Rehnstrns E F. The Tornquist Sea and Baltica-Avalonia Docking[J]. Tectonophysics, 2003, 362(1): 67-82.

[66] Matte P. Continental Subduction and Exhumation of HP Rocks in Paleozoic Orogenic Belts: Uralides and Variscides[J]. GFF, 1998, 120(2): 209-222.

[67] Villaseca C, Castiñeiras P, Orejana D. Early Ordovician Metabasites from the Spanish Central System: A Remnant of Intraplate HP Rocks in the Central Iberian Zone[J]. Gondwana Research, 2015, 27(1): 392-409.

[68] Berger J, Féménias O, Ohnenstetter D, et al. New Occurrence of UHP Eclogites in Limousin (French Massif Central): Age, Tectonic Setting and Fluid-Rock Interactions[J]. Lithos, 2010, 118(3): 365-382.

[69] Godard G,Mabit J L.Peraluminous Sapphirine For-med During Retrogression of a Kyanite-Bearing Eclogite from Pays de Léon, Armorican Massif, France[J]. Lithos, 1998, 43(1): 15-29.

[70] Giacomini F, Bomparola R M, Ghezzo C. Petrology and Geochronology of Metabasites with Eclogite Facies Relics from NE Sardinia: Constraints for the Palaeozoic Evolution of Southern Europe[J]. Lithos, 2005, 82(1): 221-248.

[71] Palmeri R,Fanning M,Franceschelli M,et al.SHRIMP Dating of Zircons in Eclogite from the Variscan Basement in North-Eastern Sardinia (Italy)[J]. Neues Jahrbuch für Mineralogie-Monatshefte, 2004, 2004(6): 275-288.

[72] Glodny J, Ring U, Kühn A, et al. Crystallization and Very Rapid Exhumation of the Youngest Alpine Eclogites (Tauern Window, Eastern Alps) from Rb/Sr Mineral Assemblage Analysis[J]. Contributions to Mineralogy and Petrology, 2005, 149(6): 699-712.

[73] Massonne H J, Kopp J. A Low-Variance Mineral Assemblage with Talc and Phengite in an Eclogite from the Saxonian Erzgebirge, Central Europe, and Its P-T Evolution[J]. Journal of Petrology, 2005, 46(2): 355-375.

[74] Casado B O, Gebauer D, Schäfer H J, et al. A Single Devonian Subduction Event for the HP/HT Metamorphism of the Cabo Ortegal Complex Within the Iberian Massif [J]. Tectonophysics, 2001, 332(3): 359-385.

[75] Schmädicke E,Mezger K,Cosca M A,et al.Variscan Sm-Nd and Ar-Ar Ages of Eclogite Facies Rocks from the Erzgebirge, Bohemian Massif[J]. Journal of Metamorphic Geology, 1995, 13(5): 537-552.

[76] Werner O, Lippolt H J. White Mica 40Ar/39Ar Ages of Erzgebirge Metamorphic Rocks: Simulating the Chronological Results by a Model of Variscan Crustal Imbrication[J]. Geological Society London Special Publications, 2000, 179(1): 323-336.

[77] Hatcher R D. Developmental Model for the Southern Appalachians[J]. Geological Society of America Bulletin, 1972, 83(9): 2735-2760.

[78] Vecoli M,Samuelsson J.Quantitative Evaluation of Microplankton Palaeobiogeography in the Ordovician-Early Silurian of the Northern Trans European Suture Zone: Implications for the Timing of the Avalonia-Baltica Collision [J]. Review of Palaeobotany & Palynology, 2001, 115(1/2): 43-68.

[79] Thybo H. Geophysical Characteristics of the Tornquist Fan Area, Northwest Trans-European Suture Zone: Indication of Late Carboniferous to Early Permian Dextral Transtension[J]. Geological Magazine, 1997, 134(5): 597-606.

[80] Bayer U, Scheck M, Rabbel W, et al. An Integrated Study of the NE German Basin[J]. Tectonophysics, 1999, 314(1): 285-307.

[81] Marotta A M, Bayer U, Scheck M, et al. The Stress Field Below the NE German Basin: Effects Induced by the Alpine Collision[J]. Geophysical Journal International, 2001, 144(2): F8-F12.

[82] Ziegler P A, Schumacher M E, Dezes P, et al. Post-Variscan Evolution of the Lithosphere in the Rhine Graben Area: Constraints from Subsidence Modelling[J]. Geological Society London Special Publications,2004, 223(1):289-317.

[83] Artemieva I M, Meissner R. Crustal Thickness Controlled by Plate Tectonics: A Review of Crust-Mantle Interaction Processes Illustrated by European Examples[J]. Tectonophysics, 2012, 530: 18-49.

[84] King P B. The Ouachita and Appalachian Orogenic Belts[M]//Alan E M Nairn, Francis G Stehli. The Gulf of Mexico and the Caribbean. New York: Springer, 1975: 201-241.

[85] Hatcher R D, Thomas W A, Viele G W. The Appalachian-Ouachita Orogen in the United States[M]. Boulder: Geological Society of America, 1989.

[86] Faill R T. A Geologic History of the North-Central Appalachians;Part 1, Orogenesis from the Mesoproterozoic Through the Taconic Orogeny[J]. American Journal of Science, 1997, 297(6): 551-619.

[87] Van Staal C R, Dewey J F, Niocaill C M, et al. The Cambrian-Silurian Tectonic Evolution of the Northern Appalachians and British Caledonides: History of a Complex, West and Southwest Pacific-Type Segment of Iapetus[J]. Geological Society of London Special Publications, 1998, 143(1): 197-242.

[88] Lafrance B, Williams P F. Silurian Deformation in Eastern Notre Dame Bay, Newfoundland[J]. Canadian Journal of Earth Sciences, 1992, 29(9): 1899-1914.

[89] Wones D R, Sinha A K. A Brief Review of Early Ordovician to Devonian Plutonism in the N American Caledonides[J]. Geological Society London Special Publications, 1988, 38(1): 381-388.

[90] Miller B V, Stewart K G, Whitney D L. Three Tectonothermal Pulses Recorded in Eclogite and Amphibolite of the Eastern Blue Ridge, Southern Appalachians[J]. Geological Society of America Memoirs, 2010, 206: 701-724.

[91] Glover L, Speer A, Russell G S, et al. Ages of Regional Metamorphism and Ductile Deformation in the Central and Southern Appalachians[J]. Lithos, 1983, 16(3): 223-245.

[92] Osberg P H. Silurian to Lower Carboniferous Tectonism in the Appalachians of the USA[J]. Geological Society London Special Publications, 1988, 38(1): 449-452.

[93] Park H, Barbeau Jr D L, Rickenbaker A, et al. Application of Foreland Basin Detrital-Zircon Geochronology to the Reconstruction of the Southern and Central Appalachian Orogen[J]. The Journal of Geology, 2010, 118(1): 23-44.

[94] Stampfli G M, Hochard C, Vérard C, et al. The Formation of Pangea[J]. Tectonophysics, 2013, 593(3):1-19.

[95] Sengör A M C. Timing of Orogenic Events: A Persistent Geological Controversy[C]//Muller D W, McKenzie J A, Weissert H. Controversies in Modern Geology. London:Academic Press, 1991: 405-473.

[96] Meert J G, Van der Voo R, Ayub S. Paleomagnetic Investigation of the Neoproterozoic Gagwe Lavas and Mbozi Complex, Tanzania and the Assembly of Gondwana[J]. Precambrian Research, 1995, 74(4): 225-244.

[97] Meert J G. A Synopsis of Events Related to the Assembly of Eastern Gondwana[J]. Tectonophysics, 2003, 362(1): 1-40.

[98] Meert J G, Lieberman B S. The Neoproterozoic Assembly of Gondwana and Its Relationship to the Ediacaran-Cambrian Radiation[J]. Gondwana Research, 2008, 14(1): 5-21.

[99] Cawood P A, Nemchin A A, Freeman M, et al. Linking Source and Sedimentary Basin: Detrital Zircon Record of Sediment Flux Along a Modern River System and Implications for Provenance Studies[J]. Earth and Planetary Science Letters, 2003, 210(1): 259-268.

[100] Machado N, Schrank A, Abreu F R, et al. Resultados Preliminares da Geocronologia U-Pb na Serra do Espinhaço Meridional[J]. Boletim da Sociedade Brasileira Geologia-Núcleo Minas Gerais, 1989, 10: 171-174.

[101] Cawood P A, Buchan C. Linking Accretionary Orogenesis with Supercontinent Assembly[J]. Earth-Science Reviews, 2007, 82(3): 217-256.

[102] Pankhurst R J. West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region[M]. London: Geological Society, 2008: 2-410.

[103] Murphy J B, Pisarevsky S, Nance R D. Potential Geodynamic Relationships Between the Development of Peripheral Orogens Along the Northern Margin of Gondwana and the Amalgamation of West Gondwana[J]. Mineralogy and Petrology, 2013, 107(5): 635-650.

[104] Alkmim F F, Marshak S, Fonseca M A. Assembling West Gondwana in the Amalgamation of West Gondwana[J]. Geology, 2001, 29(4): 319-322.

[105] Veevers J J. Gondwanaland from 650-500 Ma Assembly Through 320 Ma Merger in Pangea to 185-100 Ma Breakup: Supercontinental Tectonics via Stratigraphy and Radiometric Dating[J]. Earth-Science Reviews, 2004, 68(1): 1-132.

[106] Da Silva L C, McNaughton N J, Armstrong R, et al. The Neoproterozoic Mantiqueira Province and Its African Connections: A Zircon-Based U-Pb Geochronologic Subdivision for the Brasiliano/Pan-African Systems of Orogens[J]. Precambrian Research, 2005, 136(3): 203-240.

[107] Araújo M N C, Vasconcelos P M, da Silva F C A, et al.40Ar/39Ar Geochronology of Gold Mineralization in Brasiliano Strike-Slip Shear Zones in the Borborema Province, NE Brazil[J]. Journal of South American Earth Sciences, 2005, 19(4): 445-460.

[108] Fritz H, Abdelsalam M, Ali K A, et al. Orogen Styles in the East African Orogen: A Review of the Neoproterozoic to Cambrian Tectonic Evolution[J]. Journal of African Earth Sciences, 2013, 86(4): 65-106.

[109] Collins A S, Clark C, Plavsa D. Peninsular India in Gondwana: The Tectonothermal Evolution of the Southern Granulite Terrain and Its Gondwanan Counterparts[J]. Gondwana Research, 2014, 25(1): 190-203.

[110] Stern R J. Arc-Assembly and Continental Collision in the Neoproterozoic African Orogen: Implications for the Consolidation of Gondwanaland[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 319-351.

[111] Pinna P, Jourde G, Calvez J Y, et al. The Mozambique Belt in Northern Mozambique: Neoproterozoic (1100-850 Ma) Crustal Growth and Tectogenesis, and Superimposed Pan-African (800-550 Ma) Tectonism[J]. Precambrian Research, 1993, 62(1): 1-59.

[112] Muhongo S. Anatomy of the Mozambique Belt of Eastern and Southern Africa: Evidence from Tanzania[J]. Gondwana Research, 1999, 2(3): 369-375.

[113] Vogt M, Kröner A, Poller U, et al. Archaean and Palaeoproterozoic Gneisses Reworked During a Neoproterozoic (Pan-African) High-Grade Event in the Mozambique Belt of East Africa: Structural Relationships and Zircon Ages from the Kidatu Area, Central Tanzania[J]. Journal of African Earth Sciences, 2006, 45(2): 139-155.

[114] Bingen B, Jacobs J, Viola G, et al. Geochronology of the Precambrian Crust in the Mozambique Belt in NE Mozambique, and Implications for Gondwana Assembly[J]. Precambrian Research, 2009, 170(3): 231-255.

[115] Wit M J, Bowring S A, Ashwal L D, et al. Age and Tectonic Evolution of Neoproterozoic Ductile Shear Zones in Southwestern Madagascar, with Implications for Gondwana Studies[J]. Tectonics, 2001, 20(1): 1-45.

[116] Berhe S M. Ophiolites in Northeast and East Africa: Implications for Proterozoic Crustal Growth[J]. Journal of the Geological Society, 1990, 147(1): 41-57.

[117] Abdelsalam M G, Stern R J. Sutures and Shear Zones in the Arabian-Nubian Shield[J]. Journal of African Earth Sciences, 1996, 23(3): 289-310.

[118] Jöns N, Schenk V. Relics of the Mozambique Ocean in the Central East African Orogen: Evidence from the Vohibory Block of Southern Madagascar[J]. Journal of Metamorphic Geology, 2008, 26(1): 17-28.

[119] Kroner A, Sacchi R, Jaeckel P, et al. Kibaran Magmatism and Pan-African Granulite Metamorphism in Northern Mozambique: Single Zircon Ages and Regional Implications[J]. Journal of African Earth Sciences, 1997, 25(3): 467-484.

[120] Raharimahefa T, Kusky T M. Temporal Evolution of the Angavo and Related Shear Zones in Gondwana: Constraints from LA-MC-ICP-MS U-Pb Zircon Ages of Granitoids and Gneiss from Central Madagascar[J]. Precambrian Research, 2010, 182(1): 30-42.

[121] Dobmeier C J, Raith M M. Crustal Architecture and Evolution of the Eastern Ghats Belt and Adjacent Regions of India[J]. Geological Society London Special Publications, 2003, 206(1): 145-168.

[122] Crowe W A, Cosca M A, Harris L B. 40Ar/39Ar Geochronolgy and Neoproterozoic Tectonics Along the Northern Margin of the Eastern Ghats Belt in North Orissa, India[J]. Precambrian Research, 2001, 108(3): 237-266.

[123] Sengupta P, Sen J, Dasgupta S, et al. Ultra-High Temperature Metamorphism of Metapelitic Granulites from Kondapalle, Eastern Ghats Belt: Implications for the Indo-Antarctic Correlation[J]. Journal of Petrology, 1999, 40(7): 1065-1087.

[124] Mezger K, Cosca M A. The Thermal History of the Eastern Ghats Belt (India) as Revealed by U-Pb and 40Ar/39Ar Dating of Metamorphic and Magmatic Minerals: Implications for the SWEAT Correlation[J]. Precambrian Research, 1999, 94(3): 251-271.

[125] Bose S, Das K, Arima M. Multiple Stages of Melting and Melt-Solid Interaction in the Lower Crust: New Evidence from UHT Granulites of Eastern Ghats Belt, India[J]. Journal of Mineralogical and Petrological Sciences, 2008, 103(4): 266-272.

[126] Simmat R, Raith M M. U-Th-Pb Monazite Geochronometry of the Eastern Ghats Belt, India: Timing and Spatial Disposition of Poly-Metamorphism[J]. Precambrian Research, 2008, 162(1): 16-39.

[127] Dasgupta S, Bose S, Das K. Tectonic Evolution of the Eastern Ghats Belt, India[J]. Precambrian Research, 2013, 227: 247-258.

[128] Sarkar A, Pati U C, Panda P K, et al. Late Archaean Charnockitic Rocks from the Northern Marginal Zones of the Eastern Ghats Belt: A Geochronological Study[J]. Geol Surv India Spec Publ, 2000, 57: 171-179.

[129] Santosh M, Collins A S, Tamashiro I, et al. The Timing of Ultrahigh-Temperature Metamorphism in Southern India: U-Th-Pb Electron Microprobe Ages from Zircon and Monazite in Sapphirine-Bearing Granulites[J]. Gondwana Research, 2006, 10(1): 128-155.

[130] Santosh M, Maruyama S, Sato K. Anatomy of a Cambrian Suture in Gondwana: Pacific-Type Orogeny in Southern India ? [J]. Gondwana Research, 2009, 16(2): 321-341.

[131] Cooray C P. The Precambrian of Sri Lanka: A Historical Review[J]. Precambrian Research, 1994, 66(1/2/3/4): 3-18.

[132] Braun I, Kriegsman L M. Proterozoic Crustal Evolution of Southernmost India and Sri Lanka[J]. Geological Society London Special Publications, 2003, 206(1): 169-202.

[133] Boger S D. Antarctica-Before and After Gondwana[J]. Gondwana Research, 2011, 19(2): 335-371.

[134] Jacobs J, Bauer W, Fanning C M. Late Neoproterozoic/Early Palaeozoic Events in Central Dronning Maud Land and Significance for the Southern Extension of the East African Orogen into East Antarctica[J]. Precambrian Research, 2003, 126(1): 27-53.

[135] Jacobs J, Klemd R, Fanning C M, et al. Extensional Collapse of the Late Neoproterozoic-Early Palaeozoic East African-Antarctic Orogen in Central Dronning Maud Land, East Antarctica[J]. Geological Society London Special Publications, 2003, 206(1): 271-287.

[136] Zhao Y, Liu X C, Fanning C M, et al. The Grove Mountains, a Segment of a Pan-African Orogenic Belt in East Antarctica[C]//Abstract Volume of the 31th IGC.Rio de Janeiro:[s.n.], 2000: 11-13.

[137] Zhao Y, Liu X H, Liu X C, et al. Pan-African Events in Prydz Bay, East Antarctica, and Their Implications for East Gondwana Tectonics[J]. Geological Society London Special Publications, 2003, 206(1): 231-245.

[138] Yoshida M. Assembly of East Gondwanaland During the Mesoproterozoic and Its Rejuvenation During the Pan-African Period[J]. Geol Soc India Mem, 1995, 34: 22-45.

[139] Yoshida M, Jacobs J, Santosh M, et al. Role of Pan-African Events in the Circum-East Antarctic Orogen of East Gondwana: A Critical Overview[J]. Geological Society London Special Publications, 2003, 206(1): 57-75.

[140] Liu X, Zhao Y, Hu J. The c. 1000-900 Ma and c. 550-500 Ma Tectonothermal Events in the Prince Charles Mountains-Prydz Bay Region, East Antarctica, and Their Relations to Supercontinent Evolution[J]. Geological Society London Special Publications, 2013, 383(1): 95-112.

[141] Bauer W, Thomas R J, Jacobs J. Proterozoic-Cambrian History of Dronning Maud Land in the Context of Gondwana Assembly[J]. Geological Society London Special Publications, 2003, 206(1): 247-269.

[142] Toyoshima T, Osanai Y, Nogi Y. Macroscopic Geological Structures of the Napier and Rayner Complexes, East Antarctica[J]. Geological Society London Special Publications, 2008, 308(1): 139-146.

[143] Martelat J E, Lardeaux J M, Nicollet C, et al. Strain Pattern and Late Precambrian Deformation History in Southern Madagascar[J]. Precambrian Research, 2000, 102(1):1-20.

[144] Shiraishi K, Kagami H. Sm-Nd and Rb-Sr Ages of Metamorphic Rocks from the Sør Rondane Mountains, East Antarctica[C]//Yoshida Y. Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific, 1992: 29-35.

[145] Fitzsimons I C W. Proterozoic Basement Provinces of Southern and Southwestern Australia, and Their Correlation with Antarctica[J]. Geological Society London Special Publications, 2003, 206(1): 93-130.

[146] Harris L B. Neoproterozoic Sinistral Displacement Along the Darling Mobile Belt, Western Australia, During Gondwanaland Assembly[J]. Journal of the Geological Society, London, 1994, 15(3):90-904.

[147] Blight D F, Compston W, Wilde S A. The Logue Brook Granite: Age and Significance of Deformation Zones Along the Darling Scarp[J]. Western Australian Geological Survey, Annual Report for 1981.1980: 72-80.

[148] Powell C M A, Li Z X, McElhinny M W, et al. Paleomagnetic Constraints on Timing of the Neoproterozoic Breakup of Rodinia and the Cambrian Formation of Gondwana[J]. Geology, 1993, 21(10): 889-892.

[149] Wilde S A. Evolution of the Western Margin of Australia During the Rodinian and Gondwanan Supercontinent Cycles[J]. Gondwana Research, 1999, 2(3): 481-499.

[150] Nelson D R. Compilation of SHRIMP U-Pb Zircon Geochronological Data Record[C]//Geological Survey of Western Australia Record 1997/2. Perth: Geological Survey of Western Australia, 1997:189.

[151] Halpin J A, Crawford A J, Direen N G, et al. Naturaliste Plateau, Offshore Western Australia: A Submarine Window into Gondwana Assembly and Breakup[J]. Geology, 2008, 36(10): 807-810.

[152] Mitchell R N, Kilian T M, Evans D A D. Supercontinent Cycles and the Calculation of Absolute Palaeolongitude in Deep Time[J]. Nature, 2012, 482(7384): 208-211.

[1] 贾莹刚, 赵军, 蒋磊, 关力伟, 王小玄, 何亮. 伊犁地块北缘早古生代构造属性:来自温泉地区闪长岩的证据[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1015-1038.
[2] 齐忠友, 冯志强, 温泉波, 张铁安, 刘宾强, 李小玉, 杜兵盈. 东北地区嫩江东北部早古生代闪长岩的成因探讨:锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(1): 113-125.
[3] 李三忠, 杨朝, 赵淑娟, 李玺瑶, 索艳慧, 郭玲莉, 余珊, 戴黎明, 李少俊, 牟墩玲. 全球早古生代造山带(Ⅱ):俯冲-增生型造山[J]. 吉林大学学报(地球科学版), 2016, 46(4): 968-1004.
[4] 李三忠, 杨朝, 赵淑娟, 刘鑫, 余珊, 李玺瑶, 郭玲莉, 索艳慧, 戴黎明, 郭润华, 张国伟. 全球早古生代造山带(Ⅳ): 板块重建与Carolina超大陆[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1026-1041.
[5] 李三忠, 李玺瑶, 赵淑娟, 杨朝, 刘鑫, 郭玲莉, 王永明, 郝义, 张剑, 胡梦颖. 全球早古生代造山带(Ⅲ):华南陆内造山[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1005-1025.
[6] 曹颖, 王建, 刘建国, 包真艳, 宋樾, 李爱. 西昆仑早古生代岩浆弧大同岩体中埃达克质岩石的成因及地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(2): 425-442.
[7] 周建波, 曾维顺, 曹嘉麟, 韩杰, 郭晓丹. 中国东北地区的构造格局与演化:从500 Ma到180 Ma[J]. J4, 2012, 42(5): 1298-1316.
[8] 覃小锋,夏 斌,李 江,黎春泉,陆济璞,许 华,周府生,胡贵昂,李 乾. 阿尔金南缘构造带西段新元古代-早古生代变质岩系的变质作用[J]. J4, 2007, 37(5): 856-0867.
[9] 刘建峰,迟效国,周燕,王铁夫,金巍,周建波,董春艳,黎广荣. 小兴安岭东北部金林岩体全岩-角闪石Rb-Sr年龄[J]. J4, 2005, 35(06): 690-0693.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 孟宪纲,薄万举,刘志广,刘勇,畅柳,李朝柱,王子平. 芦山7.0级地震与巴颜喀拉块体中东段的活动性[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1705 -1711 .
[3] 陈欢庆, 梁淑贤, 舒治睿, 邓晓娟, 彭寿昌. 冲积扇砾岩储层构型特征及其对储层开发的控制作用——以准噶尔盆地西北缘某区克下组冲积扇储层为例[J]. 吉林大学学报(地球科学版), 2015, 45(1): 13 -24 .
[4] 贾大成,邢立新, 潘 军, M. J. van Bergen, H. van Roermund. 伊通上地幔剪切带捕虏体中富铝尖晶石的地球化学特征[J]. J4, 2006, 36(04): 497 -502 .
[5] 谢忠雷,杨佰玲,包国章,董德明. 茶园土壤不同形态镍的含量及其影响因素[J]. J4, 2006, 36(04): 599 -604 .
[6] 贺君玲,邓守伟,陈文龙,贾裕鲲,高金琦. 利用测井技术评价松辽盆地南部油页岩[J]. J4, 2006, 36(6): 909 -0914 .
[7] 付广, 臧凤智. 徐深大气田形成的有利地质条件[J]. J4, 2011, 41(1): 12 -20 .
[8] 马见青, 李庆春. 面波压制的TT变换法[J]. J4, 2011, 41(2): 565 -571 .
[9] 白云风, 冯志强, 程日辉, 任延广, 唐华风. 大庆长垣扶余油层沉积层序构成及充填响应[J]. J4, 2012, 42(2): 312 -320 .
[10] 王庆华,孙友宏,陈昌富,吴晓寒. BTR-4000型地层热物性原位测试仪及其应用[J]. J4, 2009, 39(2): 347 -0352 .