[1] 李江海, 李维波, 王洪浩, 等. 晚古生代泛大陆聚合的全球构造背景: 板块漩涡运动轨迹含义的探讨[J]. 地质学报, 2014, 88(6): 980-991. Li Jianghai, Li Weibo, Wang Honghao, et al. Global Tectonic Setting During the Late Paleozoic Convergence of Pangea: Discussion of Plate Vortex Trajectory[J]. Acta Geologica Sinica, 2014, 88(6): 980-991.
[2] Zhao G C, Cawood P A, Simon A W, et al. Review of Global 2.1-1.8 Ga Orogen: Implications for a Pre-Rodinia Supercontinent[J]. Earth-Science Reviews, 2002, 59(1/2/3/4): 125-162.
[3] Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup[J]. Earth-Science Reviews, 2004, 67(1): 91-123.
[4] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, Configuration, and Break-up History of Rodinia:A Synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
[5] Shu L, Wang B, Cawood P A, et al. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China[J]. Tectonics, 2015, 34(8): 1600-1621.
[6] Wang Y, Zhang F, Fan W, et al. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology[J]. Tectonics, 2010, 29(6): 1-70.
[7] Johnston S M, Hartz E H, Brueckner H K, et al. U-Pb Zircon Geochronology and Tectonostratigraphy of Southern Liverpool Land, East Greenland: Implications for Deformation in the Overriding Plates of Continental Collisions[J]. Earth & Planetary Science Letters, 2010, 297(3/4): 512-524.
[8] Hannes K, Bruecknera J A, Gilottia A P. Caledonian Eclogite-Facies Metamorphism of Early Proterozoic Protoliths from the North-East Greenland Eclogite Province[J]. Contrib Mineral Petrol, 1998, 130: 103-120.
[9] Kalsbeek F, Jepsen H F, Nutman A P. From Source Migmatites to Plutons: Tracking the Origin of ca. 435 Ma S-Type Granites in the East Greenland Caledonian Orogen[J]. Lithos, 2001, 57(1): 1-21.
[10] Augland L E, Andresen A, Corfu F. Late Ordovician to Silurian Ensialic Magmatism in Liverpool Land, East Greenland: New Evidence Extending the Northeastern Branch of the Continental Laurentian Magmatic Arc[J]. Geological Magazine, 2012, 149(4): 561-577.
[11] Keller G R, Hatcher R D. Some Comparisons of the Structure and Evolution of the Southern Appalachian-Ouachita Orogen and Portions of the Trans-European Suture Zone Region[J]. Tectonophysics, 1999, 314(1): 43-68.
[12] Soper N J, Strachan R A, Holdsworth R E, et al. Sinistral Transpression and the Silurian Closure of Iapetus[J]. Journal of the Geological Society, 1992, 149(6): 871-880.
[13] Dewey J F, Strachan R A. Changing Silurian-Devonian Relative Plate Motion in the Caledonides: Sinistral Transpression to Sinistral Transtension[J]. Journal of the Geological Society, 2003, 160(2): 219-229.
[14] Hull J M, Friderichsen J D, Gilotti J A.Gneiss Complex of the Skerfjorden Mregion Hypothesis, Environmental Speculation[J]. GSA Bulletin, 1997, 109(1): 16-42.
[15] Thrane K. Relationships Between Archaean and Pa-laeoproterozoic Crystalline Basement Complexes in the Southern Part of the East Greenland Caledonides: An Ion Microprobe Study[J]. Precambrian Research, 2002, 113(1): 19-42.
[16] Kalsbeek F. Geochemistry, Tectonic Setting, and Poly-Orogenic History of Palaeoproterozoic Basement Rocks from the Caledonian Fold Belt of North-East Greenland[J]. Precambrian Research, 1995, 72(3/4): 301-315.
[17] Caby R, Bertrand-Sarfati J. The Eleonore Bay Group(Central East Greenland)[M]//Later Proterozoic Stratigraphy of the Northern Atlantic Regions. New York: Springer, 1988: 212-236.
[18] Larsen L M, Watt W S, Watt M. Geology and Petrology of the Lower Tertiary Plateau Basalts of the Scoresby Sund Region, East Greenland[R]. Greenland: Geological Survey of Greenland, 1989:157-164.
[19] Dhuime B, Bosch D, Bruguier O, et al. Age, Provenance and Post-Deposition Metamorphic Overprint of Detrital Zircons from the Nathorst Land Group (NE Greenland): A LA-ICP-MS and SIMS Study[J]. Precambrian Research, 2007, 155(1): 24-46.
[20] White A, Hodges K, Martin M. Geologic Constraints on Middle-Crustal Behavior During Broadly Synorogenic Extension in the Central East Greenland Caledonides[J]. International Journal of Earth Sciences, 2002, 91(2): 187-208.
[21] Friderichsen J D, Holdsworth R E, Jepsen H F, et al. Caledonian and Pre-Caledonian Geology of Dronning Louise Land, North-East Greenland[J]. Rapport Grønlands Geologiske Undersøgelse, 1990, 148: 133-141.
[22] Braun A, Kim H R, Csatho B, et al. Gravity-Inferred Crustal Thickness of Greenland[J]. Earth & Planetary Science Letters, 2007, 262(1/2): 138-158.
[23] Stephens M B, Gee D G. A Tectonic Model for the Evolution of the Eugeoclinal Terranes in the Central Scandinavian Caledonides[C]//The Caledonide Orogen: Scandinavia and Related Areas. Wiley: Chichester, 1985: 953-978.
[24] Roberts D.The Scandinavian Caledonides:Event Chro-nology, Palaeogeographic Settings and Likely Modern Analogues[J]. Tectonophysics, 2003, 365(1/2/3/4): 283-299.
[25] Roberts D, Melezhik V A, Heldal T. Carbonate Formations and Early NW-Directed Thrusting in the Highest Allochthons of the Norwegian Caledonides: Evidence of Laurentian Ancestry[J]. Journal of the Geological Society, 2002, 159(2): 117-120.
[26] Hacker B R, Gans P B. Continental Collisions and the Creation of Ultrahigh-Pressure Terranes: Petrology and Thermochronology of Nappes in the Central Scandinavian Caledonides[J]. Geological Society of America Bulletin, 2005, 117(1/2): 117-134.
[27] Bingen B, Belousova E A, Griffin W L. Neoproterozoic Recycling of the Sveconorwegian Orogenic Belt: Detrital-Zircon Data from the Sparagmite Basins in the Scandinavian Caledonides[J]. Precambrian Research, 2011, 189(3): 347-367.
[28] Lundmark A M, Corfu F. Emplacement of a Silurian Granitic Dyke Swarm During Nappe Translation in the Scandinavian Caledonides[J]. Journal of Structural Geology, 2008, 30(7): 918-928.
[29] Fossen H, Dunlap W J. Timing and Kinematics of Caledonian Thrusting and Extensional Collapse, Southern Norway: Evidence from 40Ar/39Ar Thermochronology[J]. Journal of Structural Geology, 1998, 20(6): 765-781.
[30] Bruton D L, Harper D A T. Brachiopods Andtrilobites of the Early Ordovician Serpentinite Otta Conglomerate, South Central Norway[J]. Norsk Geologisk Tidsskrift, 1981, 61: 3-18.
[31] Sturt B A, Roberts D. Tectonostratigraphic Relationships and Obduction Histories of Scandinavian Ophiolitic Terranes[M]//Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Amsterdam: Springer, 1991: 745-769.
[32] Tegner C, Wilson J R, Robins B. Crustal Assimilation in Basalt and Jotunite: Constraints from Layered Intrusions[J]. Lithos, 2005, 83(11): 299-316.
[33] Brueckner H K, Roermund H L M V. Concurrent HP Metamorphism on both Margins of Iapetus: Ordovician Ages for Eclogites and Garnet Peridotites from the Seve Nappe Complex, Swedish Caledonides[J]. Journal of the Geological Society, 2007, 164(1): 117-128.
[34] Dallmeyer R D, Gee D G. 40Ar/39Ar Mineral Dates from Retrogressed Eclogites Within the Baltoscandian Miogeocline: Implications for a Polyphase Caledonian Orogenic Evolution[J]. Geological Society of America Bulletin, 1986, 87: 26-34.
[35] Janák M, Roermund H V, Majka J, et al. UHP Metamorphism Recorded by Kyanite-Bearing Eclogite in the Seve Nappe Complex of Northern Jämtland, Swedish Caledonides[J]. Gondwana Research, 2013, 23(3): 865-879.
[36] Kylander-Clark, Andrew R C, Hacker B R, et al. Slow Subduction of a Thick Ultrahigh-Pressure Terrane[J]. Tectonics, 2009, 28(2): 1779-1794.
[37] Boundy T M, Mezger K, Essene E J. Temporal and Tectonic Evolution of the Granulite-Eclogite Association from the Bergen Arcs, Western Norway[J]. Lithos, 1997, 39( 3/4): 159-178.
[38] Andréasson P G. The Baltoscandian Margin in Neoproterozoic-Early Palaeozoic Times. Some Constraints on Terrane Derivation and Accretion in the Arctic Scandinavian Caledonides[J]. Tectonophysics, 1994, 231(1/2/3): 1-32.
[39] Grenne T, Ihlen P M, Vokes F M. Scandinavian Caledonide Metallogeny in a Plate Tectonic Perspective[J]. Mineralium Deposita, 1999, 34(5): 422-471.
[40] Slagstad T, Pin C, Roberts D, et al. Tectonomagmatic Evolution of the Early Ordovician Suprasubduction-Zone Ophiolites of the Trondheim Region, Mid-Norwegian Caledonides[J]. Geological Society London Special Publications, 2014, 390(1): 541-561.
[41] Eide E A, Lardeaux J M. A Relict Blueschist in Meta-Ophiolite from the Central Norwegian Caledonides-Discovery and Consequences[J]. Lithos, 2002, 60(1): 1-19.
[42] Walsh E O, Hacker B R, Gans P B, et al. Crustal Exhumation of the Western Gneiss Region UHP Terrane, Norway: 40Ar/39Ar Thermochronology and Fault-Slip Analysis[J]. Tectonophysics, 2013, 608: 115-1179.
[43] Breivik A J, Mjelde R, Grogan P, et al. Caledonide Development Offshore-Onshore Svalbard Based on Ocean Bottom Seismometer, Conventional Seismic, and Potential Field Data[J]. Tectonophysics, 2005, 401(1): 79-117.
[44] Johansson A, Gee D G, Larionov A N, et al. Grenvillian and Caledonian Evolution of Eastern Svalbard a Tale of Two Orogenies[J]. Terra Nova, 2005, 17(4):317-325.
[45] Ohta Y. Caledonian and Precambrian History in Svalbard: A Review, and an Implication of Escape Tectonics[J]. Tectonophysics, 1994, 231(1/2/3): 183-194.
[46] Stephens M B.斯堪的那维亚和Svalbard地区加里东造山带中的地体及其增生历史评述[J]. 世界地质, 1991,10 (1):91-92. Stephens M B. Terranes in Caledonides and Their Accretion History in Scandinavia and Svalbard Regions[J]. World Geology, 1991,10 (1):91-92.
[47] Bernard G J, Peucat J J, Ohta Y. Age and Nature of Protoliths in the Caledonian Blueschist-Eclogite Complex of Western Spitsbergen: A Combined Approach Using U Pb, Sm Nd and REE Whole-Rock Systems[J]. Lithos, 1993, 30(1): 81-90.
[48] Griffiths J B, Peucat J J, Ohta Y. Age and Nature of Protoliths in the Caledonian Blueschist-Eclogite Complex of Western Spitsbergen: A Combined Approach Using U Pb, Sm Nd and REE Whole-Rock Systems[J]. Lithos, 1993, 30 (1): 81-90.
[49] Trettin H P. The Arctic Islands[C]//Bally A W, Palmer A R. The Geology of North America.Boulder:An Overview the Geological Society of America,1989:349-370.
[50] Dallmeyer R D, Reuter A.40Ar/39Ar Whole-Rock Dating and the Age of Cleavage in the Finnmark Autochthon, Northernmost Scandinavian Caledonides[J]. Lithos, 1989, 22(3): 213-222.
[51] Dallmeyer R D, Lecorche J P.40Ar/39Ar Polyorogenic Mineral Age Record in the Northern Mauritanide Orogen, West Africa[J]. Tectonophysics, 1990, 177(1): 81-107.
[52] Ko?mińska K, Majka J, Mazur S, et al. Blueschist Facies Metamorphism in Nordenskiöld Land of West-Central Svalbard[J]. Terra Nova, 2014, 26(5): 377-386.
[53] Michalski K, Lewandowski M, Manby G. New Palaeomagnetic, Petrographic and 40Ar/39Ar Data to Test Palaeogeographic Reconstructions of Caledonide Svalbard[J]. Geological Magazine, 2012, 149(4): 696-721.
[54] Labrousse L, Elvevold S, Lepvrier C, et al. Structural Analysis of High-Pressure Metamorphic Rocks of Svalbard: Reconstructing the Early Stages of the Caledonian Orogeny[J]. Tectonics, 2008, 27(5): 269-283.
[55] McKerrow W S, Niocaill C M, Dewey J F. The Caledonian Orogeny Redefined[J]. Journal of the Geological Society, 2000, 157: 1149-1154.
[56] Atherton M P, Ghani A A. Slab Breakoff: A Model for Caledonian, Late Granite Syn-Collisional Magmatism in the Orthotectonic (Metamorphic) Zone of Scotland and Donegal, Ireland[J]. Lithos, 2002, 62(3): 65-85.
[57] Oliver G J H, Wilde S A, Wan Y. Geochronology and Geodynamics of Scottish Granitoids from the Late Neoproterozoic Break-Up of Rodinia to Palaeozoic Collision[J]. Journal of the Geological Society, 2008, 165(3): 661-674.
[58] Hollis S P, Cooper M R, Roberts S, et al. Stratigraphic, Geochemical and U-Pb Zircon Constraints from Slieve Gallion, Northern Ireland: A Correlation of the Irish Caledonian Arcs[J]. Journal of the Geological Society, 2013, 170(5): 737-752.
[59] Soper N J. The Newer Granite Problem: A Geotectonic View[J]. Geological Magazine, 1986, 123(3):227-236.
[60] Read H H. Aspects of Caledonian Magmatism in Britain[J]. Geological Journal, 1961, 2(4): 653-683.
[61] Oliver G J H. Reconstruction of the Grampian Episode in Scotland: Its Place in the Caledonian Orogeny[J]. Tectonophysics, 2001, 332(Sup.1/2): 23-49.
[62] Golonka J, Gaw?da A. Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic[M]//Sharkov, Evgenii. Tectonics-Recent Advances. Vienna: Intech Press, 2012: 261-282.
[63] Pharaoh T C. Palaeozoic Terranes and Their Lithospheric Boundaries Within the Trans-European Suture Zone (TESZ): A Review[J]. Tectonophysics, 1999, 314( 1/2/3): 17-41.
[64] Berthelsen A. The Tornquist Zone Northwest of the Carpathians: An Intraplate Pseudosuture[J]. Gff, 1998, 120(2): 223-230.
[65] Torsvik T H, Rehnstrns E F. The Tornquist Sea and Baltica-Avalonia Docking[J]. Tectonophysics, 2003, 362(1): 67-82.
[66] Matte P. Continental Subduction and Exhumation of HP Rocks in Paleozoic Orogenic Belts: Uralides and Variscides[J]. GFF, 1998, 120(2): 209-222.
[67] Villaseca C, Castiñeiras P, Orejana D. Early Ordovician Metabasites from the Spanish Central System: A Remnant of Intraplate HP Rocks in the Central Iberian Zone[J]. Gondwana Research, 2015, 27(1): 392-409.
[68] Berger J, Féménias O, Ohnenstetter D, et al. New Occurrence of UHP Eclogites in Limousin (French Massif Central): Age, Tectonic Setting and Fluid-Rock Interactions[J]. Lithos, 2010, 118(3): 365-382.
[69] Godard G,Mabit J L.Peraluminous Sapphirine For-med During Retrogression of a Kyanite-Bearing Eclogite from Pays de Léon, Armorican Massif, France[J]. Lithos, 1998, 43(1): 15-29.
[70] Giacomini F, Bomparola R M, Ghezzo C. Petrology and Geochronology of Metabasites with Eclogite Facies Relics from NE Sardinia: Constraints for the Palaeozoic Evolution of Southern Europe[J]. Lithos, 2005, 82(1): 221-248.
[71] Palmeri R,Fanning M,Franceschelli M,et al.SHRIMP Dating of Zircons in Eclogite from the Variscan Basement in North-Eastern Sardinia (Italy)[J]. Neues Jahrbuch für Mineralogie-Monatshefte, 2004, 2004(6): 275-288.
[72] Glodny J, Ring U, Kühn A, et al. Crystallization and Very Rapid Exhumation of the Youngest Alpine Eclogites (Tauern Window, Eastern Alps) from Rb/Sr Mineral Assemblage Analysis[J]. Contributions to Mineralogy and Petrology, 2005, 149(6): 699-712.
[73] Massonne H J, Kopp J. A Low-Variance Mineral Assemblage with Talc and Phengite in an Eclogite from the Saxonian Erzgebirge, Central Europe, and Its P-T Evolution[J]. Journal of Petrology, 2005, 46(2): 355-375.
[74] Casado B O, Gebauer D, Schäfer H J, et al. A Single Devonian Subduction Event for the HP/HT Metamorphism of the Cabo Ortegal Complex Within the Iberian Massif [J]. Tectonophysics, 2001, 332(3): 359-385.
[75] Schmädicke E,Mezger K,Cosca M A,et al.Variscan Sm-Nd and Ar-Ar Ages of Eclogite Facies Rocks from the Erzgebirge, Bohemian Massif[J]. Journal of Metamorphic Geology, 1995, 13(5): 537-552.
[76] Werner O, Lippolt H J. White Mica 40Ar/39Ar Ages of Erzgebirge Metamorphic Rocks: Simulating the Chronological Results by a Model of Variscan Crustal Imbrication[J]. Geological Society London Special Publications, 2000, 179(1): 323-336.
[77] Hatcher R D. Developmental Model for the Southern Appalachians[J]. Geological Society of America Bulletin, 1972, 83(9): 2735-2760.
[78] Vecoli M,Samuelsson J.Quantitative Evaluation of Microplankton Palaeobiogeography in the Ordovician-Early Silurian of the Northern Trans European Suture Zone: Implications for the Timing of the Avalonia-Baltica Collision [J]. Review of Palaeobotany & Palynology, 2001, 115(1/2): 43-68.
[79] Thybo H. Geophysical Characteristics of the Tornquist Fan Area, Northwest Trans-European Suture Zone: Indication of Late Carboniferous to Early Permian Dextral Transtension[J]. Geological Magazine, 1997, 134(5): 597-606.
[80] Bayer U, Scheck M, Rabbel W, et al. An Integrated Study of the NE German Basin[J]. Tectonophysics, 1999, 314(1): 285-307.
[81] Marotta A M, Bayer U, Scheck M, et al. The Stress Field Below the NE German Basin: Effects Induced by the Alpine Collision[J]. Geophysical Journal International, 2001, 144(2): F8-F12.
[82] Ziegler P A, Schumacher M E, Dezes P, et al. Post-Variscan Evolution of the Lithosphere in the Rhine Graben Area: Constraints from Subsidence Modelling[J]. Geological Society London Special Publications,2004, 223(1):289-317.
[83] Artemieva I M, Meissner R. Crustal Thickness Controlled by Plate Tectonics: A Review of Crust-Mantle Interaction Processes Illustrated by European Examples[J]. Tectonophysics, 2012, 530: 18-49.
[84] King P B. The Ouachita and Appalachian Orogenic Belts[M]//Alan E M Nairn, Francis G Stehli. The Gulf of Mexico and the Caribbean. New York: Springer, 1975: 201-241.
[85] Hatcher R D, Thomas W A, Viele G W. The Appalachian-Ouachita Orogen in the United States[M]. Boulder: Geological Society of America, 1989.
[86] Faill R T. A Geologic History of the North-Central Appalachians;Part 1, Orogenesis from the Mesoproterozoic Through the Taconic Orogeny[J]. American Journal of Science, 1997, 297(6): 551-619.
[87] Van Staal C R, Dewey J F, Niocaill C M, et al. The Cambrian-Silurian Tectonic Evolution of the Northern Appalachians and British Caledonides: History of a Complex, West and Southwest Pacific-Type Segment of Iapetus[J]. Geological Society of London Special Publications, 1998, 143(1): 197-242.
[88] Lafrance B, Williams P F. Silurian Deformation in Eastern Notre Dame Bay, Newfoundland[J]. Canadian Journal of Earth Sciences, 1992, 29(9): 1899-1914.
[89] Wones D R, Sinha A K. A Brief Review of Early Ordovician to Devonian Plutonism in the N American Caledonides[J]. Geological Society London Special Publications, 1988, 38(1): 381-388.
[90] Miller B V, Stewart K G, Whitney D L. Three Tectonothermal Pulses Recorded in Eclogite and Amphibolite of the Eastern Blue Ridge, Southern Appalachians[J]. Geological Society of America Memoirs, 2010, 206: 701-724.
[91] Glover L, Speer A, Russell G S, et al. Ages of Regional Metamorphism and Ductile Deformation in the Central and Southern Appalachians[J]. Lithos, 1983, 16(3): 223-245.
[92] Osberg P H. Silurian to Lower Carboniferous Tectonism in the Appalachians of the USA[J]. Geological Society London Special Publications, 1988, 38(1): 449-452.
[93] Park H, Barbeau Jr D L, Rickenbaker A, et al. Application of Foreland Basin Detrital-Zircon Geochronology to the Reconstruction of the Southern and Central Appalachian Orogen[J]. The Journal of Geology, 2010, 118(1): 23-44.
[94] Stampfli G M, Hochard C, Vérard C, et al. The Formation of Pangea[J]. Tectonophysics, 2013, 593(3):1-19.
[95] Sengör A M C. Timing of Orogenic Events: A Persistent Geological Controversy[C]//Muller D W, McKenzie J A, Weissert H. Controversies in Modern Geology. London:Academic Press, 1991: 405-473.
[96] Meert J G, Van der Voo R, Ayub S. Paleomagnetic Investigation of the Neoproterozoic Gagwe Lavas and Mbozi Complex, Tanzania and the Assembly of Gondwana[J]. Precambrian Research, 1995, 74(4): 225-244.
[97] Meert J G. A Synopsis of Events Related to the Assembly of Eastern Gondwana[J]. Tectonophysics, 2003, 362(1): 1-40.
[98] Meert J G, Lieberman B S. The Neoproterozoic Assembly of Gondwana and Its Relationship to the Ediacaran-Cambrian Radiation[J]. Gondwana Research, 2008, 14(1): 5-21.
[99] Cawood P A, Nemchin A A, Freeman M, et al. Linking Source and Sedimentary Basin: Detrital Zircon Record of Sediment Flux Along a Modern River System and Implications for Provenance Studies[J]. Earth and Planetary Science Letters, 2003, 210(1): 259-268.
[100] Machado N, Schrank A, Abreu F R, et al. Resultados Preliminares da Geocronologia U-Pb na Serra do Espinhaço Meridional[J]. Boletim da Sociedade Brasileira Geologia-Núcleo Minas Gerais, 1989, 10: 171-174.
[101] Cawood P A, Buchan C. Linking Accretionary Orogenesis with Supercontinent Assembly[J]. Earth-Science Reviews, 2007, 82(3): 217-256.
[102] Pankhurst R J. West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region[M]. London: Geological Society, 2008: 2-410.
[103] Murphy J B, Pisarevsky S, Nance R D. Potential Geodynamic Relationships Between the Development of Peripheral Orogens Along the Northern Margin of Gondwana and the Amalgamation of West Gondwana[J]. Mineralogy and Petrology, 2013, 107(5): 635-650.
[104] Alkmim F F, Marshak S, Fonseca M A. Assembling West Gondwana in the Amalgamation of West Gondwana[J]. Geology, 2001, 29(4): 319-322.
[105] Veevers J J. Gondwanaland from 650-500 Ma Assembly Through 320 Ma Merger in Pangea to 185-100 Ma Breakup: Supercontinental Tectonics via Stratigraphy and Radiometric Dating[J]. Earth-Science Reviews, 2004, 68(1): 1-132.
[106] Da Silva L C, McNaughton N J, Armstrong R, et al. The Neoproterozoic Mantiqueira Province and Its African Connections: A Zircon-Based U-Pb Geochronologic Subdivision for the Brasiliano/Pan-African Systems of Orogens[J]. Precambrian Research, 2005, 136(3): 203-240.
[107] Araújo M N C, Vasconcelos P M, da Silva F C A, et al.40Ar/39Ar Geochronology of Gold Mineralization in Brasiliano Strike-Slip Shear Zones in the Borborema Province, NE Brazil[J]. Journal of South American Earth Sciences, 2005, 19(4): 445-460.
[108] Fritz H, Abdelsalam M, Ali K A, et al. Orogen Styles in the East African Orogen: A Review of the Neoproterozoic to Cambrian Tectonic Evolution[J]. Journal of African Earth Sciences, 2013, 86(4): 65-106.
[109] Collins A S, Clark C, Plavsa D. Peninsular India in Gondwana: The Tectonothermal Evolution of the Southern Granulite Terrain and Its Gondwanan Counterparts[J]. Gondwana Research, 2014, 25(1): 190-203.
[110] Stern R J. Arc-Assembly and Continental Collision in the Neoproterozoic African Orogen: Implications for the Consolidation of Gondwanaland[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 319-351.
[111] Pinna P, Jourde G, Calvez J Y, et al. The Mozambique Belt in Northern Mozambique: Neoproterozoic (1100-850 Ma) Crustal Growth and Tectogenesis, and Superimposed Pan-African (800-550 Ma) Tectonism[J]. Precambrian Research, 1993, 62(1): 1-59.
[112] Muhongo S. Anatomy of the Mozambique Belt of Eastern and Southern Africa: Evidence from Tanzania[J]. Gondwana Research, 1999, 2(3): 369-375.
[113] Vogt M, Kröner A, Poller U, et al. Archaean and Palaeoproterozoic Gneisses Reworked During a Neoproterozoic (Pan-African) High-Grade Event in the Mozambique Belt of East Africa: Structural Relationships and Zircon Ages from the Kidatu Area, Central Tanzania[J]. Journal of African Earth Sciences, 2006, 45(2): 139-155.
[114] Bingen B, Jacobs J, Viola G, et al. Geochronology of the Precambrian Crust in the Mozambique Belt in NE Mozambique, and Implications for Gondwana Assembly[J]. Precambrian Research, 2009, 170(3): 231-255.
[115] Wit M J, Bowring S A, Ashwal L D, et al. Age and Tectonic Evolution of Neoproterozoic Ductile Shear Zones in Southwestern Madagascar, with Implications for Gondwana Studies[J]. Tectonics, 2001, 20(1): 1-45.
[116] Berhe S M. Ophiolites in Northeast and East Africa: Implications for Proterozoic Crustal Growth[J]. Journal of the Geological Society, 1990, 147(1): 41-57.
[117] Abdelsalam M G, Stern R J. Sutures and Shear Zones in the Arabian-Nubian Shield[J]. Journal of African Earth Sciences, 1996, 23(3): 289-310.
[118] Jöns N, Schenk V. Relics of the Mozambique Ocean in the Central East African Orogen: Evidence from the Vohibory Block of Southern Madagascar[J]. Journal of Metamorphic Geology, 2008, 26(1): 17-28.
[119] Kroner A, Sacchi R, Jaeckel P, et al. Kibaran Magmatism and Pan-African Granulite Metamorphism in Northern Mozambique: Single Zircon Ages and Regional Implications[J]. Journal of African Earth Sciences, 1997, 25(3): 467-484.
[120] Raharimahefa T, Kusky T M. Temporal Evolution of the Angavo and Related Shear Zones in Gondwana: Constraints from LA-MC-ICP-MS U-Pb Zircon Ages of Granitoids and Gneiss from Central Madagascar[J]. Precambrian Research, 2010, 182(1): 30-42.
[121] Dobmeier C J, Raith M M. Crustal Architecture and Evolution of the Eastern Ghats Belt and Adjacent Regions of India[J]. Geological Society London Special Publications, 2003, 206(1): 145-168.
[122] Crowe W A, Cosca M A, Harris L B. 40Ar/39Ar Geochronolgy and Neoproterozoic Tectonics Along the Northern Margin of the Eastern Ghats Belt in North Orissa, India[J]. Precambrian Research, 2001, 108(3): 237-266.
[123] Sengupta P, Sen J, Dasgupta S, et al. Ultra-High Temperature Metamorphism of Metapelitic Granulites from Kondapalle, Eastern Ghats Belt: Implications for the Indo-Antarctic Correlation[J]. Journal of Petrology, 1999, 40(7): 1065-1087.
[124] Mezger K, Cosca M A. The Thermal History of the Eastern Ghats Belt (India) as Revealed by U-Pb and 40Ar/39Ar Dating of Metamorphic and Magmatic Minerals: Implications for the SWEAT Correlation[J]. Precambrian Research, 1999, 94(3): 251-271.
[125] Bose S, Das K, Arima M. Multiple Stages of Melting and Melt-Solid Interaction in the Lower Crust: New Evidence from UHT Granulites of Eastern Ghats Belt, India[J]. Journal of Mineralogical and Petrological Sciences, 2008, 103(4): 266-272.
[126] Simmat R, Raith M M. U-Th-Pb Monazite Geochronometry of the Eastern Ghats Belt, India: Timing and Spatial Disposition of Poly-Metamorphism[J]. Precambrian Research, 2008, 162(1): 16-39.
[127] Dasgupta S, Bose S, Das K. Tectonic Evolution of the Eastern Ghats Belt, India[J]. Precambrian Research, 2013, 227: 247-258.
[128] Sarkar A, Pati U C, Panda P K, et al. Late Archaean Charnockitic Rocks from the Northern Marginal Zones of the Eastern Ghats Belt: A Geochronological Study[J]. Geol Surv India Spec Publ, 2000, 57: 171-179.
[129] Santosh M, Collins A S, Tamashiro I, et al. The Timing of Ultrahigh-Temperature Metamorphism in Southern India: U-Th-Pb Electron Microprobe Ages from Zircon and Monazite in Sapphirine-Bearing Granulites[J]. Gondwana Research, 2006, 10(1): 128-155.
[130] Santosh M, Maruyama S, Sato K. Anatomy of a Cambrian Suture in Gondwana: Pacific-Type Orogeny in Southern India ? [J]. Gondwana Research, 2009, 16(2): 321-341.
[131] Cooray C P. The Precambrian of Sri Lanka: A Historical Review[J]. Precambrian Research, 1994, 66(1/2/3/4): 3-18.
[132] Braun I, Kriegsman L M. Proterozoic Crustal Evolution of Southernmost India and Sri Lanka[J]. Geological Society London Special Publications, 2003, 206(1): 169-202.
[133] Boger S D. Antarctica-Before and After Gondwana[J]. Gondwana Research, 2011, 19(2): 335-371.
[134] Jacobs J, Bauer W, Fanning C M. Late Neoproterozoic/Early Palaeozoic Events in Central Dronning Maud Land and Significance for the Southern Extension of the East African Orogen into East Antarctica[J]. Precambrian Research, 2003, 126(1): 27-53.
[135] Jacobs J, Klemd R, Fanning C M, et al. Extensional Collapse of the Late Neoproterozoic-Early Palaeozoic East African-Antarctic Orogen in Central Dronning Maud Land, East Antarctica[J]. Geological Society London Special Publications, 2003, 206(1): 271-287.
[136] Zhao Y, Liu X C, Fanning C M, et al. The Grove Mountains, a Segment of a Pan-African Orogenic Belt in East Antarctica[C]//Abstract Volume of the 31th IGC.Rio de Janeiro:[s.n.], 2000: 11-13.
[137] Zhao Y, Liu X H, Liu X C, et al. Pan-African Events in Prydz Bay, East Antarctica, and Their Implications for East Gondwana Tectonics[J]. Geological Society London Special Publications, 2003, 206(1): 231-245.
[138] Yoshida M. Assembly of East Gondwanaland During the Mesoproterozoic and Its Rejuvenation During the Pan-African Period[J]. Geol Soc India Mem, 1995, 34: 22-45.
[139] Yoshida M, Jacobs J, Santosh M, et al. Role of Pan-African Events in the Circum-East Antarctic Orogen of East Gondwana: A Critical Overview[J]. Geological Society London Special Publications, 2003, 206(1): 57-75.
[140] Liu X, Zhao Y, Hu J. The c. 1000-900 Ma and c. 550-500 Ma Tectonothermal Events in the Prince Charles Mountains-Prydz Bay Region, East Antarctica, and Their Relations to Supercontinent Evolution[J]. Geological Society London Special Publications, 2013, 383(1): 95-112.
[141] Bauer W, Thomas R J, Jacobs J. Proterozoic-Cambrian History of Dronning Maud Land in the Context of Gondwana Assembly[J]. Geological Society London Special Publications, 2003, 206(1): 247-269.
[142] Toyoshima T, Osanai Y, Nogi Y. Macroscopic Geological Structures of the Napier and Rayner Complexes, East Antarctica[J]. Geological Society London Special Publications, 2008, 308(1): 139-146.
[143] Martelat J E, Lardeaux J M, Nicollet C, et al. Strain Pattern and Late Precambrian Deformation History in Southern Madagascar[J]. Precambrian Research, 2000, 102(1):1-20.
[144] Shiraishi K, Kagami H. Sm-Nd and Rb-Sr Ages of Metamorphic Rocks from the Sør Rondane Mountains, East Antarctica[C]//Yoshida Y. Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific, 1992: 29-35.
[145] Fitzsimons I C W. Proterozoic Basement Provinces of Southern and Southwestern Australia, and Their Correlation with Antarctica[J]. Geological Society London Special Publications, 2003, 206(1): 93-130.
[146] Harris L B. Neoproterozoic Sinistral Displacement Along the Darling Mobile Belt, Western Australia, During Gondwanaland Assembly[J]. Journal of the Geological Society, London, 1994, 15(3):90-904.
[147] Blight D F, Compston W, Wilde S A. The Logue Brook Granite: Age and Significance of Deformation Zones Along the Darling Scarp[J]. Western Australian Geological Survey, Annual Report for 1981.1980: 72-80.
[148] Powell C M A, Li Z X, McElhinny M W, et al. Paleomagnetic Constraints on Timing of the Neoproterozoic Breakup of Rodinia and the Cambrian Formation of Gondwana[J]. Geology, 1993, 21(10): 889-892.
[149] Wilde S A. Evolution of the Western Margin of Australia During the Rodinian and Gondwanan Supercontinent Cycles[J]. Gondwana Research, 1999, 2(3): 481-499.
[150] Nelson D R. Compilation of SHRIMP U-Pb Zircon Geochronological Data Record[C]//Geological Survey of Western Australia Record 1997/2. Perth: Geological Survey of Western Australia, 1997:189.
[151] Halpin J A, Crawford A J, Direen N G, et al. Naturaliste Plateau, Offshore Western Australia: A Submarine Window into Gondwana Assembly and Breakup[J]. Geology, 2008, 36(10): 807-810.
[152] Mitchell R N, Kilian T M, Evans D A D. Supercontinent Cycles and the Calculation of Absolute Palaeolongitude in Deep Time[J]. Nature, 2012, 482(7384): 208-211. |