吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (6): 1847-1854.doi: 10.13278/j.cnki.jjuese.201606303

• 地球探测与信息技术 • 上一篇    下一篇

基于波前构建法的时间域深度偏移——delta波包途径

石秀林, 孙建国, 孙辉, 刘明忱, 刘志强, 黄兴国   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2016-03-21 出版日期:2016-11-26 发布日期:2016-11-26
  • 通讯作者: 孙建国(1956),男,教授,博士生导师,德国自然科学博士,E-mail:sun_jg@jlu.edu.cn E-mail:sun_jg@jlu.edu.cn
  • 作者简介:石秀林(1985),男,博士研究生,主要从事地震偏移成像研究,E-mail:xiulinshi@126.com
  • 基金资助:
    国家自然科学基金项目(41274120,41404085,41504084);国家科技专项项目(Sinoprobe 09-01)

Depth Migration inTime Domain Using Wavefront Construction:Delta Packet Approach

Shi Xiulin, Sun Jianguo, Sun Hui, Liu Mingchen, Liu Zhiqiang, Huang Xingguo   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2016-03-21 Online:2016-11-26 Published:2016-11-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41274120, 41404085, 41504084) and National Science and Technology Project (Sinoprobe 09-01)

摘要: 作为一种基于射线的局部瞬态场,delta波包源自高斯波束,是高斯波束在时空域的对偶表示,具有高斯波束的全部优点和缺陷。基于delta波包叠加的时间域深度偏移,当射线穿过高速岩体时,受折射效应影响,密度降低,进而导致delta波包的分布密度降低,使成像质量变差,甚至无法成像。为了弥补这个缺陷,本文采用波前构建法计算射线路径。波前构建法能够以插入射线的方式保证均匀的射线分布,从而保证delta波包以均匀的分布密度覆盖整个成像靶区,进而提高成像质量。在具体实现上,采用链表结构替代以往使用的数组结构。Sigsbee 2A模型的数值试算表明,利用波前构建法可以改善高速体下方区域的成像质量,而利用链表存储波前信息要比利用数组至少节省9%的CPU耗时。

关键词: delta波包, 波前构建, 射线密度

Abstract: The delta packet is the space-time domain counterpart of Gaussian beam, which is also the local transient wave propagating along a central ray, with all the advantages and disadvantage of Gaussian beam. Because of refraction effect, the algorithm has trouble with low ray density when rays pass through high velocity body, which would create an image in a lower quality, even no image. To solve this problem, the paper combines depth migration algorithm with wavefront construction, which is capable of raising the ray density along with wavefronts propagating. The numerical results of Sigsbee 2A model have proved that the increasing ray density could improve the image of regions beneath the high velocity body. In addition, the computation time can be shortened by at least 9% that the wavefront data are stored in chained list than in array.

Key words: delta packet, wavefront construction, ray density

中图分类号: 

  • P631.4
[1] 石秀林,孙建国,孙辉,等. 基于delta波包叠加的时间域深度偏移[J]. 地球物理学报, 2016, 59(7):2641-2649. Shi Xiulin, Sun Jianguo, Sun Hui, et al.The Time-Domain Depth Migration by the Summation of Delta Packets[J]. Chinese Journal of Geophysics, 2016, 59(7):2641-2649.
[2] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用:研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4):1231-1259. Sun Jianguo. High-Frequency Asymptotic Scattering Theories and Their Applications in Numerical Modeling and Imaging of Geophysical Fields: An Overview of the Research History and the State-of-the-Art, and Some New Developments[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4):1231-1259.
[3] 洪菲, 胡天跃. 深海油气地震勘探进展和展望[J]. 地球物理学进展, 2002, 17(2): 230-236. Hong Fei, Hu Tianyue. Advance and Prospect of Deepwater Hydrocarbon Exploration[J]. Progress in Geophyscis, 2002, 17(2): 230-236.
[4] 赵阳, 卢景美, 刘学考,等. 墨西哥湾深水油气勘探研究特点与发展趋势[J]. 海洋地质前沿, 2014, 30(6): 27-32. Zhao Yang, Lu Jingmei, Liu Xuekao, et al. Oil and Gas Exploration in Deep Water Area of Gulf of Mexico[J]. Marine Geology Frontiers, 2014, 30(6): 27-32.
[5] 朱伟林, 张功成, 钟锴, 等. 中国南海油气资源前景[J]. 中国工程科学, 2010, 12(5): 46-50. Zhu Weilin, Zhang Gongcheng, Zhong Kai, et al. South China Sea Oil and Gas Outlook[J]. Engineering Sciences, 2010, 12(5): 46-50.
[6] Vinje V, Iversen E, Gjøystdal H. Traveltime and Am-plitude Estimation Using Wavefront Construction[J]. Geophysics, 1993, 58(8): 1157-1166.
[7] Coman R, Gajewski D. 3D Wavefront Constuction Me-thod with Spherical Interpolation[C]//62th EAGE Conference & Exhibition. Glasgow: EAGE, 2000: C43.
[8] Coman R, Gajewski D. 3D Traveltime and Migration Weight Computation Using Wavefront Oriented Ray Tracing[C]//63rd EAGE Conference & Exhibition. Amsterdam: EAGE, 2001: P008.
[9] 韩复兴. 论波前构建法中的几个计算问题[D]. 长春: 吉林大学, 2009. Hang Fuxing. On Some Conputational Problems in Wavefront Construction Method[D]. Changchun: Jilin University, 2009.
[10] Sun Y, Clapp R G, Biondi B. Three Dimensional Dy-namic Ray Tracing in Complex Geological Structures[R]. Stanford: Stanford Exploration Projec, 1997: 63-75.
[11] Vinje V, Åstebøl K, Iversen E, et al. 3-D Ray Mo-deling by Wavefront Construction in Open Models[J]. Geophysics, 1999, 64(6): 1912-1919.
[12] 孙小东, 李振春, 栗宝鹃, 等. 波前构建法三维射线追踪[J]. 天然气工业, 2008, 27(增刊1): 275-277. Sun Xiaodong, Li Zhenchun, Li Baojuan, et al. 3-D Ray Tracing by Wavefront Construction[J]. Natural Gas Industry, 2008, 27(Sup. 1): 275-277.
[13] Gibson Jr R L, Durussel V, Lee K J. Modeling and Velocity Analysis with a Wavefront-Constrcution Algorithm for Anisotropic Media[J]. Geophysics, 2005, 70(4): T63-T74.
[14] 白海军, 孙赞东, 王学军. 基于波前构建法的TTI介质射线追踪[J]. 石油地球物理勘探, 2011, 46(增刊1): 1-6. Bai Haijun, Sun Zandong, Wang Xuejun. Raytracing in TTI Media Using Wavefront Construction[J]. Oil Geophysical Prospecting, 2011, 46(Sup 1): 1-6.
[15] Claerbout J. Imaging the Earth's Interior[J]. Geo-physical Journal of the Royal Astronomical Society, 1986, 86(1): 217.
[16] Popov M M, Semtchenok N M, Popov P M, et al. Depth Migration by the Gaussian Beam Summation Method[J]. Geophysics, 2010, 75(2): S81-S93.
[17] ?ervený V. Synthetic Body Wave Seismograms for Laterally Varying Layered Structures by the Gaussian Beam Method[J]. Geophysical Journal International, 1983, 73(2): 389-426.
[18] ?ervený V. Seismic Ray Theory[M]. Cambridge: Cambridge University Press, 2005.
[19] 何洋, 基于波前构建的射线走时和振幅计算[D]. 长春: 吉林大学, 2005. He Yang. Computation of Traveltimes and Amplitudes Based on Wavefront Construction Ray Tracing[D]. Changchun: Jilin University, 2005.
[20] 李云清. 数据结构[M]. 北京: 人民邮电出版社, 2004. Li Yunqing. Data Structure[M]. Beijing:Posts & Telecom Press, 2004.
[1] 韩复兴,孙建国,杨昊. 基于二维三次卷积插值算法的波前构建射线追踪[J]. J4, 2008, 38(2): 336-0340.
[2] 孙建国,何洋. 基于波前构建的射线追踪:一种Java实现[J]. J4, 2007, 37(4): 814-0820.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!